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Abstract. Migrating traditional scientific applications to computational Grids re-
quires programming tools that can help programmers update application behaviour
to this kind of platforms. Computational Grids are particularly suited for long
running scientific applications, but they are also more prone to faults than desk-

top machines. The AspectGrid framework aims to develop methodologies and tools
that can help Grid-enable scientific applications, particularly focusing on techniques
based on aspect-oriented programming. In this paper we present the aspect-oriented
approach taken in the AspectGrid framework to address faults in computational
Grids. In the proposed approach, scientific applications are enhanced with fault-
tolerance capability by plugging additional modules. The proposed technique is
portable across operating systems and minimises the changes required to base ap-
plications.
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1 INTRODUCTION

Enabling scientific applications to run on computational Grids requires mechanisms
to enable scientific applications to address resource faults. This is critical for long
running applications to avoid having to restart the application from the beginning
when a fault occurs, losing all the completed work. One effective technique to
tolerate faults is to periodically checkpoint the application state to disk, in order to
restart the execution from the last checkpoint in the case of fault.
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Techniques based on System Level Checkpointing (SLC) take a snapshot of
the program and all of its memory. This kind of checkpoint has to store all the
information of the program, including stack and all application data, so that it can
restart the program later. SLC allows a program to be checkpointed at any instant
of time. Some tools are even able to checkpoint a program without having to halt
it (e.g. Berkeley Lab’s Checkpoint/Restart [1]). Because of its nature, the time to
take a SLC snapshot of the program is longer than with other approaches and the
checkpoint is usually larger. Some tools also support parallel programs built with
MPI (e.g. BLCR). SLC approaches require support from the underlying middleware
and the checkpoint data is intrinsically non-portable across machines, since it is
saved in a machine dependent format.

Techniques based on Application Level Checkpointing (ALC) add new code to
the base application that limits the areas to be checkpointed. This approach is
smarter than SLC because it uses the knowledge of what needs to be checkpointed,
causing fewer problems when working with MPI and/or OpenMP parallel appli-
cations. Having to add code to applications is one of its greatest disadvantages.
Application-level checkpointing mechanisms for MPI were proposed in [2, 3]. Both
approaches are based on a compiler that assists the programmer to identify the state
and places in the program where checkpoint can be performed. ALC mechanisms
for OpenMP were proposed in [4].

In Grid systems it is important to provide portable checkpoint mechanisms.
Portability should be two-fold:

1. by implementing checkpoint without requiring changes to the current Grid mid-
dleware and

2. by saving checkpoint data in a portable format.

Saving checkpoint data in a portable format brings the additional benefit of making
it possible to restart applications on a different set of resources. This is suitable for
computational Grids since available resources could change during the application
run time.

The approach taken in the AspectGrid framework addresses the previous issues
by relying on application level-checkpoint mechanisms. In the proposed approach,
described in this paper, scientific applications are enhanced with checkpointing ca-
pabilities by plugging additional modules implemented with Aspect Oriented Pro-
graming (AOP) techniques [5]. AOP allows the provision of these additional mod-
ules with minimal impact on the source code of the base application. Portability is
addressed by being a Java-based approach, where application and data are indepen-
dent of specific platforms. Moreover, provided ALC mechanisms avoid changes to
the current Grid middleware and the checkpoint data is also portable, supporting
the migration of checkpoint data across platforms.

The AspectGrid approach differs from previous works by providing portability
in Grid platforms. The framework is fully based on pluggable AOP modules that
allow a uniform approach to checkpoint sequential, thread-based and MPI based



AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 91

applications. Pluggable AOP modules combined with a Java based approach add
the possibility to take snapshots and to restart applications in different sets of Grid
resources and in any of these execution modes (e.g., sequential, thread-based and
MPI based).

The rest of this paper is organised as follows. The next section introduces aspect
oriented programming techniques and Section 3 introduces the AspectGrid approach
to checkpoint. Section 4 provides a performance evaluation and Section 5 concludes
the paper.

2 OVERVIEW OF ASPECT ORIENTED PROGRAMING

Aspect Oriented Programming was proposed to address the problem of crosscutting
concerns in software systems. These concerns are normally transversal to the ap-
plication base functionality and are not effectively managed with traditional modu-
larisation techniques. A typical example is the logging functionality, whose imple-
mentation with traditional mechanism entails changing the implementation of each
function to log.

AOP addresses this kind of functionality by introducing a new unit of modu-
larity: the aspect. An aspect can intercept a well-defined set of events in the base
program (a.k.a. join points) and attach aspect specific behavior to intercepted events.
Additional behavior can be, for instance, to print the name of the intercepted method
call. A pointcut specifies a set of events to intercept and pointcut designators can
be used to gather information specific to each intercepted event.

AspectJ [6] is an extension to Java that includes mechanisms for AOP. In As-
pectJ it is possible to capture various kinds of events, including object creation,
method calls or accesses to instance fields. Objects and primitive values specific to
the context of the captured event are obtained through point-cut designators this,
target and args. Figure 1 shows the example of a logging aspect, applied to a class
Point. In this example, a message is printed on the screen on every call to me-
thods moveX or moveY. The wildcard in the pointcut expression is used to specify
a pattern for the calls signature to intercept.

!

"#$%&'!()"*'+!,-..&/.!0!
! 1-&2!(3-#/245-&/+!-$67!&/+!2&)"8!9!'(%%41-&2!5-&/+:;-1*<4&/+88!==!+(3.*+4-$68!==!(3.)42&)"8!0!

! ! >?)+*;:-#+:"3&/+%/4@A-1*!'(%%*29!+(3.*+!-$6*'+!B!@!C!-$6!C!@!D&)"%('*;*/+!@!C!2&)"8E!
! ! "3-'**24-$672&)"8E! ! ! FF!"3-'**2!+G*!-3&.&/(%!'(%%!
! H!

H!

Fig. 1. Example of an aspect for logging

The important AspectJ characteristic is that it allows to plug additional func-
tionality into base applications in a non-invasive manner. In the previous example
the program base does not need to be changed to include the logging functionality.
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Moreover, the logging aspect is “pluggable” in the sense that it can be included in
the program when logging functionality is required.

3 ASPECT ORIENTED CHECKPOINTING

IN THE ASPECTGRID FRAMEWORK

This section describes extensions made to the AspectGrid framework [7], by pro-
viding AspectJ modules that help include checkpointing capabilities into scientific
applications, minimising the amount of changes required to base programs. The pro-
vided approach is completely implemented at application level, avoiding the need
to change the current Grid middleware. Moreover, it also saves checkpointing data
in a portable manner allowing the application to restart on a different set of re-
sources. Portability is also extended to parallel applications developed with Aspect-
Grid tools [8], which include applications that provide Java thread-based parallelism
and MPI-based parallelism.

Application-level checkpoint requires saving of application data into a permanent
storage. Application data includes the data structures used by the application as
well as the call stack, which specifies the particular point in execution where the
checkpoint was taken. Application level mechanisms also rely upon a set of pre-
defined points in execution where checkpoint can be taken. This set is required since
application-level techniques require cooperation from the programmer/compiler to
define the checkpoint frequency and the corresponding places in execution flow.

The AspectGrid approach to checkpoint is based on the indication of a set
of application data fields (object allocations) to be saved into the checkpoint and
a set of safe points that provide points in execution where checkpoint can be taken.
Both are specified through AspectJ pointcuts. Checkpointed applications execute
as follows (Figure 2):

1. at application start-up, the DetectActive aspect verifies if the last execution was
concluded without failures; by intercepting the execution of the main method
and checking the existence of checkpoint data;

2. if no failure occurred in the last execution the application runs normally and
the Allocations aspect keeps track of the address of data that must be saved;

3. when a safe point in execution arises the SafePoints aspect increments the num-
ber of executed safe points and

4. when a predefined number of safe points is executed the data in addresses gath-
ered by the Allocations aspect is saved into a file, along with the number of
executed safe points.

Application restart in the case of a failure relies on a set of ignorable methods
that can be skipped during restart (also specified by means of a pointcut). Appli-
cation restart proceeds as follows (Figure 3):

1. at application start-up, the DetectActive aspect identifies a failure in the last
execution activating the replay mode;
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Fig. 2. AspectGrid checkpointing phases

2. the IgnorableMethods aspect skips the execution of methods that can be safely
ignored;

3. the SafePoints aspect increments the number of executed safe points and

4. when the number of safe points saved in the checkpoint file is accomplished the
checkpoint data is loaded and execution proceeds normally from that point.

Notice that this process rebuilds the calling stack by replaying the original appli-
cation, ignoring a set of method calls specified by the programmer. Thus, a highly
portable solution is attained, since all mechanisms are implemented at application
level.

To summarise, in the AspectGrid framework, the programmer has to write three
pointcuts:

1. data allocations;

2. safe points and

3. ignorable methods.

The AspectGrid framework provides the required additional code to take applica-
tion snapshots and to restart the application. Moreover, the framework provides
a profiling tool that helps the programmer find and write those pointcuts.
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Fig. 3. AspectGrid restart phases

Safe points and ignorable methods allow an effective checkpointing strategy.
During normal execution, the aspect counts the number of safe points executed.
During restart, the application is replayed, ignoring the specified methods, until the
same safe point is reached. The selection of the set of safe points is a trade-off
between checkpointing overhead and computation lost when a failure occurs. Note
that a checkpoint might be taken only after a set of safe points.

The AspectGrid approach provides two important benefits:

1. the base code (domain specific code) remains unchanged following the philosophy
of the framework, by providing an additional set of aspects that localise fault-
tolerance related issues and

2. the framework automatically provides mechanisms to perform checkpointing in
shared and distributed memory systems.

Checkpoint in shared memory systems is performed as follows. When a check-
point is to be taken (i.e., on a safe point) we introduce a barrier before and another
after the safe point. When all threads have reached the first barrier the master
thread saves the data specified and the number of safe points executed. Restart is
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preformed by replaying the application as on a sequential execution, but thread-
creation constructs are still executed to rebuild the number of threads and their
corresponding call stack. A barrier is introduced after the safe point where the
checkpoint was taken. The master thread reads the saved data when reaching that
safe point and then releases the other threads waiting at the barrier.

Checkpoint in distributed memory systems is performed as follows. We per-
form checkpoint on each process as in the sequential case, special care must only
be taken to ensure that every process takes the snapshot on the same safe point.
We provide two implementation alternatives to save data fields. In the first case,
each process takes a local snapshot. In that case we need to introduce two global
barriers, as in the case of the shared memory. In the second alternative we collect
the partitioned data on the master node, which avoids the need for barriers (this
is possible in our programming model, since we know how the data is partitioned
among processes).

Collecting the data and taking the snapshot at the master process has the advan-
tage of making it possible to restart the application in any of the execution modes
supported:

1. sequential execution;

2. parallel execution in shared memory systems and

3. parallel execution in distributed memory systems.

This is possible since the checkpointed data is the same in all environments. Thus,
adaptation can be performed by saving the checkpointing data and restarting with
a different configuration. An additional benefit of this approach is that the frame-
work can also checkpoint an application with a hybrid shared/distributed memory
parallelisation.

3.1 Illustrative Example

This subsection illustrates the proposed approach by showing how to introduce
checkpointing capabilities into a typical scientific application: a Successive Over Re-
laxation (SOR) that computes the solution to a set of a linear system of equations.
This version uses the red-black variation of the algorithm to enable parallelism. This
benchmark is a typical scientific application, where a five-point stencil is successively
applied to a matrix.

Figure 4 presents a code snippet of the benchmark (this code is based on the
version provided by the Java Grande Forum [9]). The doIteration method iteratively
calls method iteration alternately on red and black matrix elements. The iteration

method calls the updateRow on each row, which applies the stencil to all elements
in the row.

The first step to introduce checkpoint capabilities is to identify potential safe
points. This can be done using the AspectGrid provided profiling tool. In this case
there are three potential points in execution to introduce a safe point:



96 B. Medeiros, J. Sobral

!"#$%&'&$())'*+,'-'
' '
' ).(.%&'/+"#$01212'34'
' ).(.%&'%5.'6789':784'
' ).(.%&'/+"#$0'+;9'+7;4'
' '
' ).(.%&';%5($'<+%/'/+=.0,(.%+5)>%5.'5"7?%.0,(.%+5)@'-'
' ' 678'A'BBB'
' ' ;+,>%5.'!AC4'!D5"7?%.0,(.%+5)4'!EE@'-'
' ' ' %.0,(.%+5>C@4''''FF'%.0,(.%+5'+5'G,0/H'0$0705.)'
' ' ' %.0,(.%+5>8@4''''FF'%.0,(.%+5'+5'G#$(&IH'0$0705.)'
' ' J'
' J'
'
' ).(.%&';%5($'<+%/'%.0,(.%+5>%5.'%)?,0/@'-'
' ' ;+,>%5.',+KA84',+KD6784',+KEE@'
' ' ' "!/(.0L+K>,+K9'>,+KE%)?,0/@MNE8@4'
' J'
'
' ).(.%&';%5($'<+%/'"!/(.0L+K>%5.',+K9'%5.').(,.?0$07@'-'
' ''/+"#$012'3%A31,+K24'
' ''/+"#$012'3%78A31,+KO824'
' ''/+"#$012'3%!8A31,+KE824'
'
' '';+,>%5.'PA).(,.?0$074'PD:784PEAN@-'
' ''''3%1P2A+;Q>3%781P2E3%!81P2E3%1PO82E3%1PE82@E+7;Q3%1P24'
' ''J'
' J'
J'

'

Fig. 4. Base code for the SOR benchmark

1. doIterations ;

2. iteration and

3. updateRow.

Selecting the best place for safe points involves a trade-off between checkpoint fre-
quency and overhead. In this case, the doIterations is called only once during
program execution. The iteration method is called 200 times, with an interval of
approximately 2 seconds and updateRow is called 20 000 000 with an execution time
of a few miliseconds. Thus, in this case, the AspectGrid profiling tool suggests
placing safe points on calls to the iteration method.

After selection of the safe points, the programmer needs to define the application
data structures that must be saved on those safe points. Those correspond to data
that is changed between two consecutive executions of safe points. In this case the
AspectGrid tool indicates the matrix G.

The last step is the identification of ignorable methods. In this case, the tool
suggests that the execution of the code inside safe points can be ignored. The
programmer can also indicate other methods that can be ignored.
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The three pointcuts generated for this case study are provided in Figure 5.

!"#$%&'%()*+,!"#$%)-.(/(&*00-1"#2(#%,3*%#"$-44.(.5(

!"#$%&'%(*00"&*%#"$)-.(/(&*00(-2"'60,7878($,9-44..5(

!"#$%&'%(#:$"3*60,;,%<"2)-.(/(&*00-1"#2(#%,3*%#"$-44.5(

!

Fig. 5. Pointcut definitions to introduce checkpoint in the SOR benchmark

3.2 Implementation Overview

The checkpointing mechanism is based on a set of safe points, ignorable methods and
safe data fields. The implemented behaviour is different when the application is run-
ning normally and when the application is restarting after a failure. Figure 6 presents
a sketch of the implementation. In normal operation the implementation counts the
number of safe points and takes the snapshot when requested (lines 07–12). In re-
play mode the implementation ignores the specified method calls (lines 22–26) while
replaying the application and reload the data when the number of safe points defined
in the checkpoint is attained (lines 13–17).
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Fig. 6. Code for checkpointing
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4 PERFORMANCE EVALUATION

This section presents an evaluation of the proposed checkpoint mechanism by mea-
suring the overheads relative to hand written versions. These results were collected
on a cluster with two machines, dual Opteron 6174 per node (i.e., 24 cores per ma-
chine). Presented results are median of 20 executions. Performance results were
obtained on a typical scientific application: the Successive over Relaxation (SOR)
presented in previous section.
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Fig. 7. Overhead of checkpointing

The first test measures the overhead of introducing code for checkpoint, when 0
or 1 checkpoints are taken. Figure 7 shows the execution time of:

1. the “original” benchmark;

2. when checkpointing is introducing using classic “invasive” techniques and

3. when checkpointing is introduced through AOP.

Presented results include sequential execution (seq); execution with 2 to 16 threads
(T) and with 2 to 32 MPI processes (P). These results show that:

1. the overhead of checkpointing is very low, as it would be expected, since the
overhead is the time required to count safe points, which is less than 1% in
most cases;
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2. AOP does not impose any additional overhead when compared to traditional
invasive programming techniques;

3. there is a relevant overhead required to save checkpointing data that is directly
connected to the amount of saved data.

One important point of the proposed approach is the ability to replay the ap-
plication on a different environment. Figure 8 illustrates such case by showing the
time per SOR iteration. In this case the application started with 2 processes and on
iteration 26 it restarted on 8 processors, shortening the overall application execution
to more than half.
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Fig. 8. Application restart increasing assigned resources

5 CONCLUSION

This paper presented an aspect-oriented approach to checkpointing in computational
Grids. The approach is based on the ability to plug checkpointing modules in
scientific applications. The paper showed the feasibility of the approach and showed
that the performance penalty can be very low, when compared with similar hand
written versions.

Current implementation of this approach rely on external tools to determinate
the optimal set of resources to be used by applications. A natural evolution is to in-
corporate mechanisms to find opportunities for self-adaptation to improve execution
time, by monitoring the application and the system state.
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