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Carlos Garćıa Garino

ITIC Research Institute & Facultad de Ingenieŕıa
Universidad Nacional de Cuyo
Centro Universitario
M5500 Mendoza, Argentina
e-mail: cgarcia@itu.uncu.edu.ar

Alejandro Zunino

CONICET – ISISTAN Research Institute
UNICEN University
Paraje Arroyo Seco
B7001BBO Tandil, Buenos Aires, Argentina
e-mail: azunino@exa.unicen.edu.ar

Abstract. An Enterprise Desktop Grid (EDG) is a low cost platform that gathers
desktop computers spread over different institutions. This platform uses desktop
computers idle time to run grid applications. We argue that computers in these
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environments have a predictable productivity that affects a grid application execu-
tion time. In this paper, we propose a system called PFS for computer productivity
forecasting that improves grid applications performance. We simulated 157 500 ap-
plications and compared the performance achieved by our proposal against two
recent strategies. Our experiments show that a grid scheduler based on PFS runs
applications faster than schedulers based on other selection strategies.

Keywords: Enterprise Desktop Grid, computer productivity forecasting, predic-
tion methods, grid scheduling systems, heuristic method
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1 INTRODUCTION

In recent years, an Enterprise Desktop Grid (EDG) [30, 25] has become a less ex-
pensive alternative to traditional computational grids. This technology is a type
of volunteer computing [28] that gathers desktop computers spread over different
institutions all over the world such as universities, schools and enterprises. Cur-
rently, volunteer computing systems provide several PetaFLOPS of computational
power to solve scientific problems as shown in many publications supported by the
BOINC [27] system. An EDG takes advantage of idle time from desktop computers
voluntarily donated by users to run computation-intensive applications with inde-
pendent tasks a.k.a. grid applications. Since computers are not fully dedicated to
grid computing purposes a grid application can be suspended anytime by users. For
this reason, it is important to make an optimal usage of the computational power
provided by idle computers to improve grid applications runtime.

In volunteer systems, a grid application runtime not only depends on a com-
puter capability but also its idle time. A grid scheduler [23, 39, 40] may improve
its performance if it takes this into account. For instance, a grid scheduler queries
a Resource Discovery System (RDS) [18] for a set of computers according to certain
computational capabilities constrains. Based on the RDS response, it starts a com-
puter selection process. At this point, we assume that candidate computers have
the same computational capabilities. However, these computers will finish running
a grid application at different times because they have different idle times to exe-
cute grid applications. Details about how a grid scheduler and Resource Discovery
System works are out of the scope of this work.

In EDGs, computers are not fully dedicated to the computational grid; for this
reason, any computer will run a grid application whenever that computer is idle.
Many works deal with the problem of predicting whether a computer will be available
or not to start running an application. Nevertheless, we did not find in the litera-
ture a work that addresses the following question: “Is it possible to improve a grid
application runtime in a time-shared environment such as volunteer systems?”. In
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this sense, a computer has different and changing statuses (idle, busy or off) that
affects grid application runtime.

We use the term “computer productivity” previously defined in [41] to denote
the efficiency with which a computer processes a grid application. We will show in
Section 3 how that efficiency is affected by computer status changes. If a computer
remains idle for a long period of time it will be able to execute an application
faster than a computer that constantly switches its status from idle to busy. In this
situation, a grid scheduler may improve application runtime by selecting computers
based on their productivity. The research problem is “how to calculate and forecast
a computer productivity to improve the computer selection process made by a grid
scheduler”.

In this work, we propose to address this problem based on the following strate-
gies:

1. to calculate a computer productivity that represents the relationship between
computer status changes and a grid application performance,

2. to forecast a computer productivity to estimate how it would affect a grid ap-
plication performance and

3. to provide this information to a grid scheduler to choose computers that are
expected to execute applications faster.

To calculate how a computer productivity affects an application performance
is not an easy task. We assume that computer status changes occur at discrete
instants of time. We estimate the relationship between status changes and a grid
application performance by analyzing computer activity traces. As result, we have
designed a heuristic method that calculates a computer productivity based on a set
of metrics. Finally, we propose to forecast a computer productivity having as input
an estimation of future computer statuses.

In EDGs, desktop computer status changes show certain well-defined pat-
terns [13]. Computers located at the same office stay on at the same periods of
time, for instance from 08:00 to 18:00. On the other hand, computer usage at labo-
ratories is organized according to a teaching schedule. This predictable usage pattern
facilitated the development of accurate prediction methods [2, 34, 26, 15]. Nowa-
days, it is feasible to predict a sequence of expected computer statuses for a long
discrete period of time [14, 9]. Consequently, it is possible to forecast a computer
productivity based on this information.

There are grid schedulers that use metrics in their selection process to improve
its performance [16, 31]. In contrast to these works, we propose a system to forecast
a computer productivity in EDGs based on a heuristic method. In a previous work,
the authors introduced a preliminary version of our proposal [37], from now on called
PFS (Productivity Forecasting System). Encouraged by the preliminary empirical
validation, this paper presents an improved system and further experiments. We
did not find a similar approach in the literature. However, our proposal aims to
improve a grid scheduler performance by selecting computers based on a forecasting
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of their productivity. For this reason, we compare PFS against two current computer
selection strategies:

1. an existing work [16] where computers are selected based on a metric called
resource availability prediction (R.A.P.) and

2. random computer selection.

To validate our proposal, we ran experiments based on monitored information
from a set of desktop computers at UNCuyo University1. We developed a grid
scheduler simulator that uses three different computer selection strategies:

1. computer selection based on PFS,

2. computer selection based on RAP and

3. random computer selection.

We run 157 500 application instances and evaluated the performance achieved by
the three strategies. The results showed that grid applications scheduled using PFS
perform up to 80 % faster than other approaches.

Bear in mind that our proposal was validated in a simulation environment.
For this reason, the integration of the PFS with any current EDG implementation
requires an analysis that is part of future works.

The main contributions of this work are the following:

1. to validate that grid applications can run faster on EDGs when a grid scheduler
selects computers based on their expected productivity and

2. we empirically show that it is possible to calculate and to forecast a computer
productivity based on a sequence of that computer statuses estimated with any
prediction technique.

This paper is organized as follows. Section 2 introduces related works on pre-
diction techniques and grid schedulers where computer selection is supported by
metrics. Section 3 introduces the problem addressed by this paper. In Section 4,
the Productivity Forecasting System is presented. An explanation of the heuristic
used by the system is presented in Section 5. In Section 6 the simulation process
used to evaluate our proposal is explained followed by an analysis of the experiments
results. Finally, in Section 7 the conclusions and future works are presented.

2 RELATED WORKS

We did not find in the current literature works about a system to forecast a computer
productivity based on a heuristic method to improve grid applications performance
in EDGs. Nevertheless, our work is based on two important research areas:

1 http://www.uncu.edu.ar/
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1. prediction methods to estimate a computer availability and

2. grid schedulers that use information such as computer availability to improve
its performance.

A computer status can be calculated from an estimation of its availability or load.
Next, works related to both areas are introduced.

Computer availability can be understood as

1. CPU availability and

2. host availability.

CPU availability refers to a computer status where a host is able to run grid appli-
cations. On the other hand, host availability denotes a computer status where it is
possible to access a host via a grid middleware.

CPU availability has been deeply studied over years. A comprehensive analysis
of computer load presented in [6] concluded that CPU load exhibits complex proper-
ties such as self-similar and seasonal behavior. Even so, it is possible to predict with
a good accuracy short-term CPU load having as input historical data. Encouraged
by this result, the author analyzed different linear time series models in [8]. This
work demonstrates that computer load on real systems is predictable from past per-
formance using linear time series techniques. However, these models were accurate
for short-term (a few seconds ahead) predictions. They also have different compu-
tational requirements making some of them more practical than others to perform
predictions in real time. Both works fostered the development of different prediction
strategies. Real-time systems dynamism required new prediction strategies to deal
with real-time applications. The CPU availability prediction model presented in [2]
is able to make predictions from real-time measurements provided by a monitoring
tool in UNIX systems with a low error percentage. In real-time systems it is im-
portant to reduce prediction errors. To this end, a method for error correction of
predictions based on regression methods is presented in [5]. The authors propose to
build a secondary regression predictor whose task is to predict the signed error of
the prediction which was made using the original regression model.

Changes in the CPU load tendency a.k.a. seasonal variance may affect prediction
methods accuracy. A prediction strategy to overcome this drawback is presented
in [36]. The proposed prediction method is based on the analysis of tendencies in
previous CPU load data and similarities in behavior patterns. It uses a polynomial
fitting method to improve CPU load prediction accuracy. Another effort to deal
with seasonal CPU variance is presented in [26].

Prediction methods have drawn much attention in grid computing systems [12,
32]. One common predictor is the Network Weather Service (NWS) [21, 20]. This
system has a module that uses different forecasters to predict a computer perfor-
mance. Historical data is processed by each forecaster and an accuracy tournament
process selects which forecaster will be used. The data collected include: frac-
tions of CPU time available for new processes, TCP connection time, bandwidth
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and end-to-end round-trip network latency values. The prediction method used by
the NWS is able to deliver accurate predictions in many situations including CPU
availability [22].

In general, linear models are accurate for short-term predictions but their pa-
rameters may vary from computer to computer [9]. For this reason new methods
were developed and tested, for instance the Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) from the Artificial Intelligence (AI) area. ANFIS is a kind of neural
network that is based on a fuzzy inference system that integrates both neural net-
works and fuzzy logic principles. Its inference system corresponds to a set of fuzzy
IFTHEN rules that have learning capabilities to approximate nonlinear functions
such as CPU load. A model based on ANFIS via naive Bayes assumptions is pre-
sented in [3]. In [19] a fuzzy stochastic technique is used to predict mainframe CPU
utilization to help programmers tune its performance.

The K-means clustering algorithm [11] is another method from AI area. It has
been used to make predictions of long-term computer availability [14]. This algo-
rithm is used to find a pattern behavior in computer historical data to predict its
future availability. In [32] K-means is used to discover subsets of hosts with similar
statistical properties within a large-scale distributed system. Classification algo-
rithms [1] from AI can be used to predict a computer status based on its historical
performance data. We tested some of these algorithms in a previous work [37]. For
instance, the C4.5 algorithm [17] showed an average accuracy up to 75 % predicting
a computer status. Additionally, these algorithms are able to calculate long-term
predictions in a few seconds.

Host availability prediction is useful when it is not possible to access CPU avail-
ability data. Monitoring computers activity is not always feasible because of ad-
ministrative bureaucracy or security policies. For this reason, we include another
technique in this section that may help to predict host availability as alternative to
CPU availability. Host availability has been deeply analyzed from traces in different
works [29, 4, 10]. These preliminary studies lead to different host availability pre-
diction methods. In [35], a method to identify under-utilized CPUs based on traffic
network information is presented.

AI algorithms have also been used in this research area. In contrast to statistical
methods, some of these algorithms do not require to build a prior model neither to
identify the underlying data distribution. In addition, they are adaptive in nature
by updating historical data to generate a prediction. For instance, lazy learning
algorithms [24] such as K-Nearest Neighbors and Naive Bayes are suitable for host
availability prediction as shown in [15]. The K-means clustering algorithm [11]
has also been used in [33] to measure and characterize host availability in large-
scale Internet distributed systems such as volunteer computing and grid systems.
This strategy identifies computer groups with a correlated availability that exhibits
similar time effects. As a result, these groups can improve resource management in
volunteer computing systems.

Prediction techniques are useful to improve scheduling system performance. The
real-time scheduling advisor (RTSA) [31] is a user-level system that advices how to
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schedule real-time tasks. The goal of the RTSA is to help client application to meet
deadlines and to report when deadlines cannot be met. The resource prediction is
based on statistical time series analysis documented in [6, 7]. The system suggests
a resource from a set of computers such that a task with nominal runtime tnom,
if started now, will be completed in time (1 + sf)tnom or less with a confidence
conf where sf is the slack factor. The system response consists of a copy of the
request tnom, sf and conf values, the selected host and an estimated task runtime.
We did not compare our proposal with this work because the RTSA helps users to
select computers where to run their applications whilst PFS aims to improve the
grid scheduler computer selection process in EDGs.

A decentralized approach for volunteer computing systems based on resource
availability prediction is presented in [16]. Resource availability prediction is com-
puted considering three input factors:

1. resource availability,

2. group availability and

3. current group availability.

The first factor is computed from a historical resource activity register. It represents
the probability of individual machines availability at a given time of the week. The
second factor quantifies the number of resources available at a given time. Finally,
the third factor is calculated based on the number of busy and idle computers.
This model reduces the number of job interruptions in a distributed system of non-
dedicated desktop computers. Similar to PFS, this work computes a numerical value
used by the scheduler to select computers where to run Grid applications. We refer
to this work as R.A.P. (Resource Availability Probability) approach and it will be
compared with PFS in the experimental process.

In summary, there are many efforts that predict a computer status with a very
good accuracy. We propose to take advantage of these methods to forecast a com-
puter productivity. We argue that computer productivity forecasting may help the
scheduling system decisions to make a better assignment of applications to comput-
ers and, in turn, to reduce grid applications runtime. To this end, we propose to use
current prediction methods. Next, we state the problem addressed in this paper.

3 PROBLEM STATEMENT

In EDGs, a grid scheduler has to deal with the fact that users might claim any
computer anytime. As a consequence, a grid application can be suspended several
times until finishing its execution. A possible solution could be to move a suspended
application to an idle computer. This situation could be repeated until finishing the
application but it is costly in terms of network usage and processing time. Although
many efforts try to predict a computer status with a good accuracy this information
is not enough. Let us consider the following simplified example. A grid scheduler has
to run a grid application app1 with an unknown runtime. The grid scheduler requests
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to a Resource Discovery System a set of computers where to run this applications
based on computer capabilities constrains. The scheduler receives a response that
includes nine computers with the same hardware and software features. Based on
existing works, it is possible to predict computer statuses for a discrete time interval
that goes from t1 to t10 as shown in Figure 1. To simplify the example, let us
suppose computers will be idle the same units of time to run the application app1.
However, computers will not finish running the application at the same time. For
instance, if application runtime was 5 units of time then computer c1 would finish
at the instant t5 whilst c9 would finish at t10.

Figure 1. Computer status prediction

In this example, if the grid scheduler chooses c1, this computer will finish running
app1 faster than other candidate computers. Our proposal is founded in previous
discussed works and supported by the following premises:

• A computer productivity can be calculated having as input that computer status
changes.

• There is a relationship between a computer productivity and a grid application
runtime and it can be calculated as we will show in Section 5.

• This relationship is present in volunteer computing systems because they use
idle computer time donated by users.

• It is possible to forecast a computer productivity having as input a prediction
of future computer statuses.

We argue that computer selection made by a grid scheduler based on our pro-
posal may lead to improvements in grid applications runtime. To this end, we
propose a system to predict a computer productivity based on a prediction of com-
puter statuses. A heuristic method calculates and predicts a computer productivity.
The system runs on every computer and its forecast productivity is reported to
grid schedulers via a Resource Discovery System. Next, we introduce a detailed
explanation of the Productivity Forecasting System.
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4 THE PRODUCTIVITY FORECASTING SYSTEM

The PFS is designed to be executed as a software application on every desktop com-
puter. In this way, computers are able to provide information to a grid scheduler
about their expected productivity via a Resource Discovery System. The system is
composed of a set of modules to monitor a computer activity, to make a prediction
of computer statuses and based on this information to forecast a computer produc-
tivity. Computer statuses can be calculated using any prediction method. The PFS
modules are as follows:

1. Computer Activity Sensor,

2. PFS Interface,

3. Computer Status Predictor and

4. Computer Productivity Forecaster.

Interaction between modules is shown in Figure 2.
The computer activity sensor monitors and records data about a computer acti-

vity at a predefined frequency. In general, prediction methods use this information to
predict a computer status. The PFS interface is responsible for solving queries about
a computer productivity forecasting. These queries are broadcast via a Resource
Discovery System. A query specifies a set of parameters required to calculate that
productivity. To solve a query, the interface requests the computer status prediction
module to predict a sequence of computer statuses. Based on this information, the
productivity forecaster module calculates an expected computer productivity that
is sent back to the PFS interface. Next, a more detailed explanation of the system
modules is introduced.

Figure 2. The productivity forecasting system

4.1 Computer Activity Sensor

The computer activity sensor periodically monitors and records data about each
computer activity. Every sensor uses the same configuration settings previously
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defined by a PFS developer. The traces used in our experiments have information
monitored with a frequency of 1 minute. In future works, we will analyze whether
changes in the sampling frequency affect productivity forecasts.

To keep consistent information, computers clocks are synchronized with a central
server using NTP. The sensor records the following data:

1. date and time,

2. percentage of free RAM and

3. CPU load.

This process does not degrade computer performance.
The sensor uses an operating system daemon service. The most popular services

are the Service Activity Report for Linux and the Windows Performance Monitor
for Windows systems. In general, the storage space required to record the monitored
information is about 50 KBytes per day. The oldest records can be erased to limit
the volume of the stored information.

4.2 PFS Interface

The system interface is responsible for managing each system module. This module
takes as input a query that provides a set of configuration parameters required by
the system. Some of them include:

1. computer status prediction method to be used,

2. parameters required by that method,

3. period of time to be included in the prediction and

4. units of time considered in the prediction.

When the interface receives a query, it triggers a computer status prediction process.
Based on this information, the computer productivity forecaster module calculates
the expected productivity of that computer and it is sent back to the interface. As
mentioned before, it is expected that the PFS results are delivered to grid scheduler
via a Resource Discovery System. Interaction details between the system interface
module and a Resource Discovery System are part of future works.

4.3 Computer Status Predictor

The computer status predictor module is responsible for estimating future computer
statuses for a discrete period of time. Computer statuses include:

1. idle,

2. busy and

3. off.
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We use this simplified scheme because our interest is to predict if a computer is
idle or not to execute a grid application. A computer status is calculated based on
information provided by the sensor module. The prediction process is triggered by
the system interface module.

The module results are represented by an array called Computer Status Array.
Predictions are made using any method such as classification algorithms from AI,
the Network Weather Service, time series analysis (among others mentioned in Sec-
tion 2). An example is shown in Table 1 where the prediction time interval includes
12 hours, from 09:00 to 21:00 at a frequency of ten minutes.

09:00 09:10 09:20 09:30 09:40 09:50 . . . 20:40 20:50 21:00

idle idle idle idle busy busy . . . off off off

Table 1. Computer Status Array example

A computer status array requires additional information for further analysis
made by the Forecaster module and a grid scheduler. For this reason, every array has
associated a Computer Status Array Header. It provides the following information:

1. computer time zone,

2. date and time when the prediction was computed,

3. start date,

4. end date,

5. sampling frequency,

6. prediction method and

7. prediction method accuracy.

Table 2 shows an example of a header associated to the computer status array shown
before.

Time zone (UTC-03:00) Buenos Aires

Estimation date 02/11/2011 08:59:00

Start date 02/11/2011 09:00:00

End date 02/11/2010 21:00:00

Frequency 600

Prediction method C4.5

Accuracy 80 %

Table 2. Computer Status Array Header example

4.4 Computer Productivity Forecaster

The computer productivity forecaster module is the component responsible for cal-
culating the expected productivity for a computer. As mentioned before, we argue
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that changes in a computer statuses affect a computer productivity. Furthermore,
this productivity has a relationship to a grid application runtime. An important
challenge is how to calculate and predict that productivity. To this end, we devel-
oped a heuristic method which is introduced in the next section.

5 HEURISTIC METHOD FOR PRODUCTIVITY FORECASTING

The main goal of the proposed heuristic method is to identify from a set of comput-
ers which one may finish running a grid application faster. We developed a heuristic
method based on the thesis that there is an important relationship between com-
puter status changes and grid applications runtime. To identify that relationship we
monitored desktop computers activity from an university campus. Afterwards, we
analyzed why a set of identical computers might finish running the same application
at different times.

From that analysis, we identified that an application runtime is affected by the
following factors:

1. How long a computer is idle to run a grid application: a computer may be idle
many units of time but those units can be spread over an extended period of
time which might delay the execution of a grid application.

2. When a computer will be able to start running a grid application: a computer
may remain idle for a large period of time. Nevertheless, the difference between
the moment when an application should start running and the moment when
that computer is ready to start that application could be significant.

3. How many times a grid application is suspended by users: a computer may
start running an application immediately. However, that computer could be
interrupted several times introducing an important delay in that application
runtime.

4. How long a grid application is suspended: a computer can be interrupted a few
times but those interruptions may last a long period of time.

Considering these observations, we conclude that all factors mentioned before
affect a grid application runtime. Those factors should be taken into account to
estimate which computers will finish running an application earlier than other com-
puters with the same computational power. To this end, we defined a set of metrics
to calculate what we called in this work “computer productivity”. The metrics are
the following:

• Statuscount : the number of instances of certain status in the computer status
array.

• Clustering : the number of clusters of a selected status in the computer status
array.
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• Cohesion: this value represents how spare are clusters of the status being ana-
lyzed in the computer status array. This metric is calculated according to the
following formula:

Cohesion =
Statuscount

Clustering
.

• Statusscope: this value counts the number of instants ti from the first to the
last status occurrence.

• Productivity: this value provides a measure that aims to represent a computer
productivity capability. This metric relates the factors that may affect a grid
application runtime. Computers that show higher values are more likely to run
applications faster. This metric is computed as follows:

Productivity =
Cohesion

Statusscope
.

According to our traces analysis, computers with a productivity that tends
to 1 finish running application earlier than computers with a lower productivity
value. This experimental validation requires a more detailed study in future works.
The analysis of past computer statuses enables the heuristic method design. Con-
sider that the proposed heuristic method calculates a set of metrics based on a se-
quence of computer statuses. Then, it is possible to estimate the future productivity
of a computer. To predict those computer statuses there are a broad number of tech-
niques described in Section 2. For this reason, we propose to forecast a computer
productivity based on a prediction of computer statuses.

5.1 Productivity Forecasting System Integration with an EDG

As mentioned before, the system is designed to run on each computer that par-
ticipates in an EDG. The main goal is to provide the information calculated by
our proposal to a grid scheduler. To this end, a grid scheduler sends a request
of computers to a Resource Discovery System. This system broadcasts a query to
participant computers. Each computer forecasts its productivity based on a set of
parameters. Then, a computer will send a response back only if that computer
fulfills two requirements:

1. computational power and

2. waiting threshold.

The first parameter describes software and hardware computer features required by
grid applications to run. The second parameter is used to filter out those computers
that might take a long time to start running a grid application. For instance, a grid
application app1 should start running at an instant of time t1 and its startup should
not be delayed by certain units of time. If a computer fulfills both requirements then
it sends back a response to the Resource Discovery System. Afterwards, a ranking of
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computers ordered by their expected productivity is sent back to a grid scheduler.
Finally, one or more applications are sent by the grid scheduler to the selected
computers to be executed. Interaction between the components mentioned before is
presented in Figure 3.
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Figure 3. Grid Scheduler, RDS and PFS interaction on an EDG

In Section 3, we presented a simplified example of the problem addressed by our
proposal. In that example, a grid scheduler requires a desktop computer to run a grid
application. Application runtime is unknown and the start up of this application
should not be delayed by more than 5 units of time. The value for the parameter
waiting threshold is set by users. The Resource Discovery System broadcasts a query
with details about computers requirements. In the example shown in Figure 4 nine
computers fulfill computational power constrains. Nevertheless, since the waiting
threshold for the example is 5 units, computer c2 does not reply back to the Resource
Discovery System.

Based on the responses received from the remaining 8 computers, a ranking is
created ordered by their expected productivity as shown in Figure 4.

To simplify the explanation of the heuristic method, let us consider that all
computers are idle the same units of time. If a grid application runtime was 5
units of time then computers with higher expected productivity would run an ap-
plication faster than others. For instance, c1 and c3 have an expected productivity
of 1. According to Figure 4 those computers would finish running that application
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Figure 4. Example of a set of computers and their Productivity Forecast

faster than the rest of the other computers. Computers at the top of the ranking
would finish running an application faster than those at the list bottom. Despite
the simplicity of this example, experiments revealed that our proposal runs grid
applications faster than other approaches. However, the proposed metrics require
a more detailed analysis.

6 EXPERIMENTS AND RESULTS

To validate our proposal, we evaluated performance improvements achieved by a grid
scheduler supported by the Productivity Forecasting System. To this end, we devel-
oped a simulator that runs three different Grid scheduler configurations. The first
one uses information about computer productivity provided by the Productivity
Forecasting System to select computers where to run grid applications. The sec-
ond grid scheduler configuration selects computers randomly. Finally, the third one
selects computers based on a resource availability probability (R.A.P.) metric [16].

To calculate a computer status prediction, we used a classification algorithm
called C4.5 a.k.a. J48 [17]. This algorithm was the most accurate from a set of clas-
sification algorithms tested before running our experiments. Results of algorithm
testing are introduced in Section 6.2. The algorithm C4.5 was used to validate a pre-
liminary version of our proposal [37]. Computer status prediction using classification
algorithms requires an extensive explanation that will be presented in future works.

For the sake of simplicity, we have considered the following assumptions:

• Application execution time does not depend on computer hardware and software
features but on idle computer time.
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• Computers run applications whenever they are idle according to computer ac-
tivity traces.

• If a computer is turned off and a grid application has not finished, it will be
resumed when the computer is on and its status is idle again.

The simulator ran 157 500 grid applications with different runtime, between 600
and 5 400 seconds in the time interval from 08:00 and 15:00. In this period of time
most of computers are being used by teachers and students. Therefore, if we run
grid applications they will be suspended by those computer users several times. For
this reason this time interval is appropriate to test our system.

A variable number of grid applications were launched simultaneously in half an
hour periods of time. This number was calculated as a percentage of participant
computers. Thus, different workloads were tested in a range from 1 % to 100 %.
In this way, the proposed system was stressed because when workloads grow the
number of computers to be selected diminishes.

We split the experimental process into four stages:

1. desktop computer traces analysis,

2. classification algorithm accuracy analysis,

3. grid applications instances definition and

4. grid scheduler performance evaluation.

Experiments use a set of traces from desktop computers at UNCuyo University.
In a first stage, we analyzed if the collected information from desktop computers
was suitable to run our experiments. Then, we evaluated different classification
algorithms accuracy to select the most accurate algorithm to be included in the
experimental process. Afterwards, we created a significant number of grid applica-
tions with different configurations. Finally, we ran the generated applications for
each grid scheduler configuration and calculated the average application runtime.
Next, we present each phase in details.

6.1 Desktop Computer Traces

For a period of thirty five business days, twenty computers were monitored. On
each computer, a software application recorded the following data every minute:

1. date and time,

2. CPU load and

3. free RAM.

This information was integrated into a database for a further analysis.
Desktop computers are placed at laboratories used for teaching purposes. Stu-

dents use computers for software development and operating system management.
In general, computers stay on from Monday to Friday between 07:30 to 18:00.



PFS: A Productivity Forecasting System in EDG 799

We preprocessed the computer traces to analyze them as follows. For each
instant of time, we set a computer status (idle, busy or off) according to the CPU
load and free RAM. For instance, a computer status is idle whenever the CPU load
is zero and the RAM is under a predefined threshold. Then, the percentage of idle
computers was calculated for the period of time included in the experiments. The
result is shown in Figure 5.
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Figure 5. Percentage of idle computers from 08:00 to 15:00

It can be observed that the percentage of idle computers changes every minute.
Those computers that change their status from idle to busy suspend any grid activity.
As a consequence, selecting the right computers where to run grid applications is
important to make an optimal usage of idle computers time. We conclude that the
collected information about computer activity is appropriate to run our experiments.

6.2 Classification Algorithms Accuracy

The proposed system can use any prediction technique to estimate a computer status
for an instant of time. As mentioned before, we proposed the usage of classification
algorithms from the artificial intelligence area. For this reason, we selected and
evaluated the prediction accuracy of different algorithms.

The Weka [1] framework was used to evaluate classification algorithms accuracy.
The framework provides a module to test a set of predefined classification algorithms.
To test an algorithm, a user defines a set of configuration paramenter values and
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Figure 6. Classification algorithms accuracy for computer status prediction

provides a data set to be used in the process. In this case, we used monitoring
information from computers.

The tested algorithms were the following: IB1, BayesNet, Naive Bayes, Naive
Bayes updateable, LWL, J48, Naive Bayes Simple, VFI, NBTree, Zeror, KStar,
IBK and classification via clustering. For a detailed description of these algorithms
please refer to [38]. We evaluated each algorithm using every available data set.
Afterwards, we calculated the average accuracy and standard deviation. Results
are shown in Figure 6. Bars represent the average number of instances correctly
classified and on top of each bar average accuracy and standard deviation for each
algorithm are shown. The algorithm called J48 achieved the highest percentage of
accuracy. For this reason, it was used by the computer status predictor module in
the simulation process.

6.3 Grid Application Instances

Different grid applications instances were defined before starting running the simula-
tor. In this way, it was possible to create different scenarios to evaluate our proposal.
Since our proposal selects computers that are expected to run the application faster,
the proposed system will be stressed if the number of options is reduced. For this
reason, we created sets of applications to be launched simultaneously. The number
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of applications per set was calculated based on the number of participant computers
creating workloads from 1 % to 100 %.

Application sets were configured to be scheduled in a period of time from 08:00
to 15:00 split into 15 intervals of half an hour. For each set, applications startup
time was chosen randomly within each time interval. Application duration ranges
from 600 and 5 400 seconds and was generated randomly. This process was repeated
a configurable number of times represented by the variable num iteration.

The number of grid applications instances created was calculated according to
Equation (1):

total app = num app ∗ num intervals ∗ num iteration (1)

The number of grid application num app at every time interval was calculated
as shown in Equation (2):

num app =
1∑

i=0.1

n ∗ i (2)

where i = i + 0.05 and n is the number of participant computers.
The simulator used the following configuration. For each one of the 15 time in-

tervals, a number of application instances num app is generated according to Equa-
tion (2), which in this case is 210. Since this process was repeated 50 times the
number of application instances created was 157 500.

6.4 Grid Scheduler Performance Evaluation

Experiments are designed to assess how our proposal can improve grid scheduling
systems performance. To this end, the metric to be considered is the average runtime
achieved by different grid scheduler configurations. In this stage, the simulator takes
as input the grid application sets and the computer traces.

Once the simulator processed all grid application instances the average runtime
was calculated. Results include the average grid application runtime achieved by
fully-dedicated computers to measure the improvement achieved in comparison with
other strategies. We present results performance achieved under different workloads.

Figures 7 to 10 show the average application runtime for different workloads.
For the sake of simplicity, we present results achieved for workloads of 5 %, 25 %,
75 % and 100 %. Each graph represents results calculated for the period of time
from 08:00 to 15:00.

In most cases, we observe that the runtime standard deviation for the other
strategies is significantly greater than our proposal. The average runtime for the
Productivity Forecasting System is not significantly degraded by workload varia-
tions. A slight difference is observed at 11:00 with a workload of 10 % in Figure 7
where random selection outperforms the other strategies. A possible explanation is
that the number of idle computers decreases between 10:00 and 11:00 according to
the percentage of idle computers shown in Figure 5.
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In summary, PFS outperformed other strategies in almost all cases. Addition-
ally, the runtime standard deviation for our proposal is smaller than other ap-
proaches. In some cases, PFS ran grid applications up to 80 % faster than other
strategies. To calculate this value, we considered the runtime achieved by the appli-
cations simulated. Then, we calculated the percentage of improvement achieved by
our proposal in comparison with the best performance of other strategies. For in-
stance, the runtime for an application app1 was 1 000, 5 000 and 5 500 seconds using
PFS, RAP and random selection, respectively. For this example, we compared PFS
and RAP runtime where our proposal ran app1 80 % faster than other approaches.

7 CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a computer productivity forecasting system to improve
grid application runtime in EDGs. The system calculates and predicts a computer
productivity. We are interested in computer productivity because it significantly
influences grid application runtime in volunteer computing systems. For this reason,
our proposal predicts a computer productivity based on a prediction of a sequence
of computer statuses. Experimental results show that a grid scheduler can improve
application execution performance if it chooses computers based on their expected
future productivity.

To validate our proposal, we developed a simulator to run grid applications in
EDGs environment. The simulator has a grid scheduler that uses three computer
selection strategies:

1. selection based on our proposal,

2. selection based on R.A.P. and

3. random selection.

We used computer activity traces from desktop computer placed at a university
campus. In the first stage, we analyzed computer traces to verify that computer
usage patterns are useful for simulating an EDG environment. The collected infor-
mation showed that the average number of idle computers varies over time in such
a way that is suitable for running our experiments. In the second stage, 157 500 grid
application instances were created with an execution time that varied from 600 to
5 400 seconds. Applications were launched simultaneously creating different work-
loads to stress our proposal by reducing the number of computers to be selected. We
compared the average runtime achieved by our proposal against the other computer
selection strategies.

Results show that a grid scheduler based on PFS runs applications up to 80 %
faster than the other strategies. We conclude that computer status changes do affect
grid applications runtime. We tested a heuristic method to calculate a computer pro-
ductivity based on a set of metrics that represent computer status changes. On the
other hand, computer status prediction plays an important role in the Productivity
Forecasting System and it deserves a deeper analysis.



PFS: A Productivity Forecasting System in EDG 805

In future works, we will analyze in depth issues such as:

1. prediction techniques,

2. the heuristic method used by our proposal,

3. PFS performance on different computing environments and

4. PFS and resource discovery system integration.

In contrast to other works, our experiments used classification algorithms to predict
a computer status based on historical information. We will perform a more detailed
assessment of classification algorithms applied to status predictions; for instance,
the amount of monitored information over time, the number of fields considered by
the algorithms, changes in computer usage that may alter classification algorithms
performance. On the other hand, we will accomplish a more detailed comparison of
classification algorithms and other prediction techniques.

The heuristic method used by our proposal is based on the calculation of a set
metrics. We will carry out a more detailed analysis of this metrics and its relationship
to grid applications performance. Results may lead to changes in the heuristic
method to improve the performance of our proposal.
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