Computing and Informatics, Vol. 28, 2009, 619-633

A SITUATION-AWARE CROSS-PLATFORM
ARCHITECTURE FOR UBIQUITOUS GAME

JungHyun HAN, Dong-Hyun LEE, Hyunwoo KiMm, Hoh Peter IN

College of Information and Communications
Korea University, Seoul, Korea
e-mail: hoh_in@korea.ac.kr

Hee-Seo CHAE

Department of Computer Science, USC
LA, USA

Eenjun HWANG

School of FElectrical Engineering
Korea University, Seoul, Korea

Young [k EoMm

School of Information and Communication Engineering
Sungkyunkwan University, Suwon, Korea

Manuscript received 25 September 2006; revised 29 October 2007
Communicated by Thomas Fabringer

Abstract. Multi-player online games (MOGs) are popular in these days. However,
contemporary MOGs do not really support ubiquity in the sense that a seamless ser-
vice across heterogeneous hardware platforms is not provided. This paper presents
the architecture of the cross-platform online game, which provides a service to users
from heterogeneous platforms and is equipped with a situation-aware capability for



620 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

enabling the users to seamlessly move between heterogeneous platforms. The ex-
perimental results through the prototype implementations show the feasibility of
the situation-aware cross-platform game.

Keywords: Cross-platform game, situation-aware middleware, conflict resolution

1 INTRODUCTION

Recently, we have seen rapid growth of multi-player online games (MOGs) that can
accommodate hundreds of thousands simultaneous players. Initially, MOGs were
serviced only for PCs. However, they are now running on game consoles such as
PlayStation3 and Xbox360, arcade game machines, or even mobile devices.

MOGs have been serviced mostly for a single platform, but multi-platform
MOGs have recently emerged [1]. In a multi-platform MOG, users from hetero-
geneous platforms, e.g. a PC user and a cell phone user, can interact. Figure 1
illustrates its ideal environment, where a single game service is provided to multiple
platforms, on which their own client game engines are built.

The goal of the research work presented in this paper is to develop a situation-
aware multi-platform MOG. An evident instance of situation is the game player’s
location, and we propose a smart MOG which can detect changes of the game player’s
location and then can provide a seamless move between heterogeneous platforms.
Suppose that, for example, a mobile game player enters home. If the player wants
to continue the game on PC which has a better display device, the game should be
seamlessly moved to PC with the current game status preserved. Similarly, a game
player at PC can seamlessly change the game platform into a mobile device when the
player has to leave the PC. When a multi-platform MOG supports such a seamless
move between heterogeneous platforms, we name it a cross-platform game. This
paper presents the architecture of a situation-aware middleware, designed and de-
veloped for a cross-platform game.

S PC N
nhone ' ' .
Iow—enc_j PDA EEEER > high'en_d
game engine game engine

‘ cross—platform
mobile game ~ game server
L console m d‘ )

Fig. 1. Multi-platform online game




A Situation-aware Cross-platform Architecture for Ubiquitous Game 621

The cross-platform game is a good instance of ubiquitous computing, which is
expected to provide a consistent service anytime and anywhere, using any available
devices and networks. The cross-platform game presented in this paper can be
called a uwbiquitous game. In designing a ubiquitous game, it is important to note
that multiple devices may conflict for a single service. The cross-platform ubiquitous
game service must be operated intelligently in order to resolve the conflict between
multiple devices, and to provide the best environment to the game player. This
paper presents a conflict-resolution model for a ubiquitous game.

The organization of the paper is as follows. Section 2 reviews the related work.
Section 3 presents the cross-platform game scenario, and Section 4 discusses the core
component of the cross-platform game: situation-aware middleware based on sensor
networks. Section 5 discusses the conflict resolution model. Section 6 presents the
implementation issues. Finally, Section 7 concludes this paper.

2 RELATED WORK

There have been lots of research works proposed to support mobility in the ubi-
quitous computing environment. In the domain of personal communications such as
mobile telephony, many approaches have been proposed, and a good example is the
Berkeley ICEBERG project [2]. In the heterogeneous network environment including
cellular networks, pager networks, and IP-based networks, the ICEBERG project
alms at ‘any-to-any communication’ service, which refers to the ability to support
communication between different types of devices effectively, and ‘personal mobility’
support which treats people, rather than devices, as communication endpoints. The
latter is achieved by assigning every person a unique ID and mapping between the
specific device ID and unique ID through a name mapping service. In the work,
however, the cross-platform issue is not properly addressed.

Takasugi et al. [3] proposed a seamless service platform for a ubiquitous network
environment. The platform supports ‘service migration’ which continues a service
even if nodes are changed. It is achieved by using a virtual network constructed with
seamless proxies that relay data between applications and keep connections among
them. Their work focused on mobile nodes acting as servers, but nodes running
client programs are not the highlight of the approach.

Cui et al. [4] aimed to support user mobility in the ubiquitous computing envi-
ronment, and proposed a mechanism to preserve the user’s access to the same service
despite changes of the accessing host. In a middleware layer, they built mobility
functions for handoff management and service instantiation across heterogeneous
computing platforms. They tested the system on mobile video and audio players.
In contrast, the major application of the work proposed in this paper is in the online
games. Further, the proposed middleware has a different architecture from the one
of Cui et al. [4] and includes distinct functionalities such as conflict resolution.

The concept of ubiquitous game has recently emerged and explored the merger
of ubiquitous computing and computer game. A recent report on the ubiquitous



622 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

game can be found in [5]. However, previous works have focused on various sensing
technologies, for example, for capturing physical interaction, blurring of physical and
virtual worlds, etc. Unlike the previous works, this paper presents the first attempt
to develop the core components of the sensor network-based situation-aware cross-
platform MOG such that an adaptive, seamless service can be provided when a game
player moves between heterogeneous platforms.

There have been efforts to apply grid computing techniques to massively multi-
player online games (MMOGSs). A key element in successful grid collaboration is
resource management. Dumitrescu and Foster [6] proposed GRUBER, an architec-
ture and toolkit for resource usage service level agreement (SLA) specification and
enforcement in a grid environment, focusing on computing resources such as com-
puters, storage, and networks. On the other hand, there is another line of efforts to
develop a new class of applications characterized as real-time online interactive appli-
cations, such as online games, based on the grid computing platform [7]. To support
the requirements of those applications, advanced services for resource allocation,
monitoring and planning are required at the resource management level. Siddiqui
et al. [8] introduced a new 3-layered negotiation protocol for advance reservation
of the grid resources in order to optimize resource utilization and QoS constraints
while generating the contention-free solutions. In the broad sense, the conflict reso-
lution model proposed in this paper may be taken as an extension of the resource
management.

3 SITUATION-AWARE CROSS-PLATFORM SERVICE:
A UBIQUITOUS GAME SCENARIO

We distinguish between context and situation. A context represents a state of a de-
vice at a specific time while a situation is a context augmented with semantics.
For example, given a device ‘at a location,” the context may simply mean its 3D
coordinates (x,y, z), but the situation may inform us that the device is in a living
room of a house. Ubiquitous game should be able to provide a situation-aware ser-
vice for a player, using the best platform among the available ones. This is called
a situation-aware cross-platform service.

This section presents a scenario for situation-aware cross-platform game service,
with two game platforms, PDA and PC. Figure 2 illustrates the scenario. The game
clients (PDA and PC) and the game server are arbitrated and synchronized by the
situation-aware middleware. The middleware collects raw contextual data through
the sensor network. Suppose that a PDA game player enters home. Then, the sensor
network recognizes the new context (Step 1 in Figure 2) and communicates it to the
middleware (Step 2).

The middleware processes the context data, and identifies the situation where
PDA and PC are at the same location. If reasoning with the situation data recom-
mends that it is better to continue the game service on PC, the middleware issues
an inquiry to PDA (Step 3). The inquiry would be asking the user whether to move



A Situation-aware Cross-platform Architecture for Ubiquitous Game 623

game server

[

5. triggering of
PC game

situation-aware middleware 6. PC game

service
2. context data 3. inquir
transmission ngJE y 4.ACK
A,
1. PDA detection ‘ - i

Fig. 2. A cross-platform game scenario

to PC. The user may want to continue the game on PC which has a better display
device. When the PDA user agrees to move to PC (Step 4), the middleware triggers
the game server (Step 5) in order for the cross-platform game to run at PC (Step 6).

Fig. 3. Cross-platform game implementation with PDA, PC and sensor nodes

Figure 3 shows a prototype cross-platform game (named ‘Bumping Pucks’) im-
plemented in PDA, PC, and sensors. In the prototype implementation, both of the
situation-aware middleware and game server are located in a PC. However, they can
be disconnected, and are designed and developed to communicate through TCP/IP.
A sensor node (Crossbow’s Mote [9]) is attached to PDA, as shown in Figure 3a).
When the PDA game user approaches PC, the gateway sensor (in Figure 3 b)) con-
nected to the PC detects it, and upon the user’s acknowledgement, game playing at
PDA seamlessly moves to PC, as shown in Figure 3¢).



624 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

4 SITUATION-AWARE MIDDLEWARE ARCHITECTURE

The situation-aware middleware handles all situation-related issues such as user
mobility, and therefore the game server is freed of the burden to be situation-aware.
Figure 4 shows the main components of the situation-aware middleware. The mission
of the middleware is three-fold and is carried out by situation registrar, situation
manager, and conflict resolver, respectively.

The situation registrar processes raw contextual data passed through the sensor
network, and then generates and registers situation data into the situation database.
The situation manager performs reasoning with the situation data, and generates
actions to change the devices’ states. In the process of the situation management,
some conflicts may arise among the devices. Then, the conflict resolver is invoked.
According to the suggestion from the conflict resolver, the situation manager deter-
mines which services are provided in which devices.

game server <
y
v situation-aware
situation SCSL middleware
database compiler

sensor — ;
situation q q conflict
network ->[ e e ]—»{ situation manager : ek }

4

N

gameclients
(game platformsincluding PDA, PC, mobile phone, etc.)

A

Fig. 4. Situation-aware middleware architecture

A situation is defined per device, and is stored as a tuple <D, T, S, V> in the
database. A situation <D, T, S, V> implies that, at time T, device D’s state S has
been set to value V. Examples of the states include location of the device, whether
the device is playing a game, the URL of the game playing on the device, etc.

Suppose that we have two PCs (PC; and PCs) in the ubiquitous game envi-
ronment and the situation-aware computing starts at time 0. Then, the situation
registrar creates the following situations for PCy, and stores them in the database.

<PC1, 0, location, HOME> // s1
<PC1, 0, play, OFF> // s2

The above situations say that PC; is home and does not run any game. For
PCs,, we have the same situations.



A Situation-aware Cross-platform Architecture for Ubiquitous Game 625

<PC2, 0, location, HOME> // s3
<PC2, 0, play, OFF> // 84

Suppose that, according to the scenario presented in Section 3, the PDA game
player enters home after 5 seconds. On the PDA, the cross-platform online game
‘Bumping Pucks’ is run. Then, the following situations are generated for PDA, and
are registered in the database.

<PDA, 5, location, HOME> // ss
<PDA, 5, play, ON> !/ se
<PDA, 5, game, BUMPING-PUCKS> // s7

The above situations say that PDA is home and runs the game ‘Bumping Pucks.’
Upon the new situations in the database, the situation manager is invoked to deter-
mine whether the situation requirements are satisfied and, if so, to create appropriate
actions. In principle, the situation manager is a function, which reasons with the
situations in the database.

For a ubiquitous game designer, who is not a well-trained programmer in gene-
ral, the function may not be easy to code. As an easy authoring tool for the game
designer, we have adopted and simplified ‘situation-aware contract specification lan-
guage (SCSL)’ proposed by the first author of this paper [10, 11]. For moving game
play from PDA to PC, the following SCSL code is created by the game designer and
stored in the game server.

Situation Aware Object {
[activate at (PC.locaton=PDA.location)] move (PC,PDA)
RequiredResources (CPU(A100,B90,C30),
MEMORY (400MB) ,
GPU(A100,B100,C85),
// other requirements
)
// other specifications such as QoS
} Move_playing game ;

The above SCSL code simply states that action ‘move (PC,PDA)’ is performed
when the situation data confirm that PC and PDA are in a location. Further, note
that, in order for a PC to play the game, it must meet a set of system requirements,
which is specified in ‘RequiredResources’. (The system requirement will be dis-
cussed in Section 5.) With SCSL, the game designer can specify required actions
to be performed when some situation requirements are fulfilled. For more detailed
descriptions of SCSL, readers are referred to [10, 11].

When the system starts, the SCSL code is, in advance, fetched to the middleware
and compiled into a Java code by the SCSL compiler, as shown in Figure 4. The
Java code performs the platform-move by executing a set of pre-defined methods, an



626 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

example of which is shown in Appendix A: The idle PCs located around the PDA’s
position are collected and passed to the conflict resolver. When the best-fit PC is
suggested by the conflict resolver, the user is inquired whether to move to the PC.

If the user agrees, the cross-platform game gets run at the PC, according to
the mechanism shown in Figure 2. As a result, the states of PC and PDA are
changed, and the situation manager updates the situation database. Suppose that
the game play moves from PDA to PC,y. Then, we have the following situations in
the database: sg defined for PDA has been updated to declare that the game does
not run at PDA any longer; For PC, s4 is updated and sg is newly created.

<PDA, 10, play, OFF> // se
<PC2, 10, play, ON> !/ 84
<PC2, 10, game, BUMPING-PUCKS> // ss

5 CONFLICT RESOLUTION

In the ubiquitous game environment, a conflict occurs when multiple devices are
available for a game service. Suppose that, when a mobile game player enters home,
there are multiple PCs that can run the online game, i.e. multiple PCs conflict toward
a game service. The conflict resolver shown in Figure 4 handles such a conflict for
providing the best environments to the game players.

Grade chip clock # of cores
A Core2 Extreme QX6800 3.0G 4
B Core2 Duo E6600 24G 2
C Pentium D 945 34G 2
D Pentium 4 2.8 2.8G 1

Table 1. CPU grades

Grade chip vertices per second | shader model
A eForce 6800 Ultra 600 million 3.0
B GeForceFX 5950 Ultra 356 million 2.0
C GeForced Ti 4400 125 million 1.0
D GeForce2 MX400 25 million -

Table 2. GPU grades

Note that there are typically many system requirements for a game, including
CPU and memory specifications, GPU capabilities, etc. For the sake of simplicity,
let us consider only CPU and GPU, and classify them into 4 grades. Tables 1 and 2
show the grades of the popular CPUs and GPUs, respectively, with a representative
chip for each grade.



A Situation-aware Cross-platform Architecture for Ubiquitous Game 627
performance

100% 90% o-00%

o ' ' ' grade
A
Fig. 5. CPU requirement graph

The game ‘Bumping Pucks’ on PC performs a good amount of physical simu-
lation. Collision detection and resolution among the pucks are absolutely required,
and furthermore, damaged pucks need the effect of mesh fracturing®. As the mi-
nimum CPU requirement, ‘grade C’ is specified. The game shows satisfactory and
best performances with ‘grade B’ and ‘grade A’ CPUs, respectively. These CPU
requirements are specified in ‘RequiredResources’ of the SCSL code in Section 4,
and Figure 5 visualizes them in a graph.!

performance

100 100% 100%
6 LA
85% =

@ t t t grade
A

Fig. 6. GPU requirement graph

‘Bumping Pucks’ is not GPU-intensive. However, its rendering engine is de-
veloped using shaders, and ‘Bumping Pucks’ does not run on ‘grade D’ GPU,
which does not support shaders. Therefore, the minimum GPU requirement is
set to ‘grade C.” Figure 6 shows the graph of GPU requirements, specified in
‘RequiredResources’ of the SCSL code in Section 4.

For a cross-platform game, we need to define a suitability function of the hard-
ware requirements. A simplest form of such a function is a linear combination of
every hardware component’s suitability. Suppose that the function for ‘Bumping
Pucks’ is 2C'+ G, where C and G measure the CPU-suitability and GPU-suitability,
respectively. The weight associated with the CPU-suitability is 2, and implies that
the game is CPU-critical, not GPU-critical.

! The PDA version of ‘Bumping Pucks’ handles collision only, and does not support
mesh fracturing, which is a very expensive effect. Instead, a set of textures is used to
represent the degrees of damage.



628 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

PC | CPU grade | GPU grade | estimated suitability
1 C A 2 x 30+ 100 = 160
A C 2 x 100 4+ 85 = 285

Table 3. Conflict resolution model

When a PDA game player enters a room, where two PCs are idle, the PCs
compete for serving the game. The CPU and GPU grades of the PCs are shown
in Table 3. For each candidate PC, the suitability function is estimated. Let us
estimate the suitability of PC;. The graphs in Figures 5 and 6 show that the
CPU-suitability of PC;y is 30% and its GPU-suitability is 100 %. According to
the suitability function 2C' + G, the overall suitability of PC; is then estimated as
2 x 30 + 100 = 160. Similarly, the suitability of PC, is estimated as 285, as shown
in Table 3. Therefore, the conflict resolver recommends that PDA game moves to
PCs, not to PCy, because PCy better fits to ‘Bumping Pucks’.

The graphs in Figures 5 and 6 are discrete. Suppose that a hardware compo-
nent’s grade is above the minimum requirement and lies in an interval of discrete
grades. Then, linear interpolation is used to determine its suitability. When the
estimated suitability of every PC falls below some pre-specified threshold, the PDA
game does not move to any PC. Of course, when there is no idle PC, no move is
triggered at all.

6 IMPLEMENTATIONS

The hardware components of the proposed system include an HP PDA, a desktop
PC, and Crossbow’s Mote sensors [9]. Microsoft Embedded Visual C++ was used
as a development platform for PDA programming. The situation-aware middleware
was implemented in Java 2. The situation database is currently implemented in
IBM’s TSpaces [12]. The time delay for platform move is approximately 2 seconds.

For the proof-of-concept implementation, we have developed a simple TCP /IP-
based game server, which follows the traditional architecture. Its modules consist
of

1. the game container, which provides the game service API and the actual game
logic is mounted on,

2. the gateway server working as a request-response broker, and

3. the back-end system the main part of which is the game database.

We have also developed a high-end game engine for PC and a low-end engine
for PDA. The high-end game engine is developed using shaders, especially for im-
plementing the fracturing special effects. The low-end engine is built upon OpenGL
ES (OpenGL for Embedded Systems) [13], which is a standard interface for the 3D
acceleration chips [14, 15].



A Situation-aware Cross-platform Architecture for Ubiquitous Game 629

Fig. 7. Cross-platform movie

Even though OpenGL ES is currently adopted by most of mobile 3D chips, it
may compete, for example, with Microsoft Direct3D Mobile, a COM-based subset of
Direct3D 8, as their desktop ancestors (OpenGL and Direct3D) have done. In order
to encompass such various low-level APIs, an abstract/mid-level API (working as
a wrapper) is designed, and in fact the low-end engine is built upon the abstract
API. Currently, only OpenGL ES implementation in software is connected to the
abstract API. However, when it is replaced by a hardware implementation or even by
a new low-level API such as Direct3D Mobile, such change will not be visible to the
game engine because the abstract API hides all changes in low-level APIs. Mobile
game/multimedia consoles include PlayStation Portable (PSP) and Nintendo DS
(NDS). Both of them are equipped with 3D acceleration chips. The abstract APT of
the engine can be layered upon the low-level APIs of PSP and NDS, and therefore
the engine can support both PSP and NDS in the future.

The proposed situation-aware middleware can serve not only MOG but also
other entertainment applications. A simpler application is cross-platform movie.
Figure 7 shows such a movie between PC and PDA. When a user playing a movie
at PDA approaches a PC, the sensor gateway connected to the PC detects it, and
the movie playing at PDA seamlessly moves to the PC.

7 CONCLUSIONS

This paper presents research and development results for the situation-aware cross-
platform game. Unlike a few existing turn-based (not real-time) multi-platform
MOGs mostly in the casual board game genre, the authors aim at a real-time multi-
platform MOG. Furthermore, the game service can be seamlessly moved across



630 J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

heterogeneous platforms. To the best of the authors’ knowledge, this work is the
first of its kind in the field of multi-platform MOGs.

Note that, in the current work, communications between devices are based on
proprietary and somewhat hard-coded protocols. As a future work, more inter-
operable protocols between ubiquitous devices will be explored. For the purpose,
BPEL4WS (Business Process Execution Language for Web Services) [16] and WSDL
(Web Service Description Language) [17] are studied to exchange XMLbased mes-
sages between devices. We are also considering a more effective conflict resolution
method. The current method based on linear combination of hardware components
works fine, and is also scalable. However, the conflict resolution is inherently an op-
timization problem [18], and better techniques from the field can be adopted.

Appendix A

typedef struct{
int CPU;
int GPU;
}Spec;

public class PDAtoPC extends Thread{
public void run(){

int result = 0;
int bestPC = 0;
situation PDA;
PDA = GetSituation();

result = SearchPCinSDB(PDA.location, idle);

if (result '= 0) {
int size = sizeof (Spec);
Spec* idlePCSpec;
idlePCSpec =
(Spec*)realloc(NULL, sizeof (Spec)*result);

for(int i=0; i < result; i++){
(id1lePCSpec+size*i)
= getPCinSDB(PDA.location,idle);

bestPC
= Conflict_Resolver(idlePCSpec, result);



A Situation-aware Cross-platform Architecture for Ubiquitous Game 631

if (bestPC != 0)
Inquire_PDA_to_PC(id1ePCSPEC [bestPC-1]) ;

A cknowledgement

This research was supported by a Korea University Grant for JungHyun Han, and
also was supported by MKE, Korea under ITRC NIPA-2009-(C1090-0902-0046)

REFERENCES

[1] HaN, J.—Kang, I.—HyuN, C.—Woo0, J.—Eowm, Y.: Multi-Platform Online
Game Design and Architecture. In Proc. of the 10" IFIP TC13 International Con-
ference on Human-Computer Interaction, Sep. 2005, Rome, Italy, pp. 1116-1119.

[2] The ICEBERG project, http://iceberg.cs.berkeley.edu/.

[3] TakasuGl, K.—NAKAMURA, M.—KUBOTA, M.: Seamless Service Platform for
a Ubiquitous Network Environment. NTT Technical Review, Vol. 1, 2003, No. 5,
pp- 89-94.

[4] Cul, Y.—NAHRSTEDT, K.—Xu, D.: Seamless User-Level Handoff in Ubiquitous
Multimedia Service Delivery. Multimedia Tools and Applications, Vol. 22, 2004,
pp. 137-170.

[6] BJORK, S.—HOLOPAINEN, J.—LJUNGSTR, P.—MANDRYK, R.: Personal and Ubiq-
uitous Computing. Special Issue on Ubiquitous Games, Vol. 6, 2002.

[6] DumITRESCU, C.—FOSTER, I.: GRUBER: A Grid Resource SLA Broker. Lecture
Notes in Computer Science, Vol. 3648, 2005, pp. 465-474.

[7] edutain@grid project, http://www.edutaingrid.eu.

[8] SippIQUI, M.—VILLAZON, A.—FAHRINGER, T.: Grid Capacity Planning with
Negotiation-based Advance Reservation for Optimized QoS. Proc. of International
Supercomputing Conference, Nov. 2006.

[9] Crossbow Mote,
http://www.xbow.com/Products/Wireless Sensor Networks.htm.

[10] Yau, S.—WaNG, Y.—HuANG, D.—IN, H.: Situation-Aware Contract Specification
Language for Middleware for Ubiquitous Computing. Proc. of IEEE Workshop on
Future Trends of Distributed Computing Systems, May 2003, pp. 93-99.

[11] IN, H—Kiv, C.—YAU, S.: Q-MAR: An Adaptive QoS Management Model for
Situation-aware Middleware. Proc. of Embedded and Ubiquitous Software Engineer-
ing Workshop, Dec. 2004, pp. 972-981.

[12] IBM TSpaces, http://www.almaden. ibm.com/cs/TSpaces.

3] OpenGL ES, http://www.khronos.org/opengles/.

[14] ATi IMAGEON series, http://www.ati.com.



632

J. Han, D. Lee, H. Kim, H. In, H. Chae, E. Hwang, Y. Eom

[15] NVIDIA GoForce 3D series, http://www.nvidia. com.

[16] Business Process Execution Language for Web Services (BPEL4WS) Version 1.1,
5 May 2003, http://www.omg.org.

[17] Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

[18] WINSTON, W.: Operations Research. Duxbury Press 2003.

JungHyun HAN is a Professor in the College of Information and
Communications at Korea University, where he directs the In-
teractive 3D Media Laboratory and Game Research Center sup-
ported by the Korea Ministry of Culture, Sports, and Tourism.
Prior to joining Korea University, he worked at the School of In-
formation and Communications Engineering of Sungkyunkwan
University in Korea, and at the Manufacturing Systems Integra-
tion Division of the US Department of Commerce National Insti-
tute of Standards and Technology (NIST). He received a B. Sc.
degree in computer engineering at Seoul National University,

an M. Sc. degree in computer science at the University of Cincinnati and a Ph.D. de-
gree in computer science at USC. His research interests include real-time simulation and

animation for games.

—

Dong-Hyun LEE is a Ph. D. candidate of the College of Infor-
mation and Communications at Korea University. His primary
research interests are in software engineering on embedded sys-
tem, value-based software engineering, and ubiquitous comput-
ing. He received his M. Sc. degree in computer science from
Korea University.

Hee-Seo CHAE is an M. Sc. candidate in the Department of
Computer Science at University of Southern California. His re-
search interests lie in ubiquitous computing based on wireless
sensor networks, multi-agent robotics, and machine learning us-
ing probabilistic approaches. He also received his M. Sc. degree
in computer science from Korea University.



A Situation-aware Cross-platform Architecture for Ubiquitous Game 633

Hyunwoo KM is a programmer in Npluto Co. in Korea. He
received his B. E. degree in information and communications en-
gineering at Sungkyunkwan University and his M. Sc. degree in
computer science and engineering at Korea University. His re-
search interests are in game engine architecture, collision detec-
tion and game physics.

Eenjun HWANG received his B. Sc. and M. Sc. degrees in com-
puter engineering from Seoul National University, Seoul, Korea,
in 1988 and 1990, respectively; and his Ph.D. degree in com-
puter science from the University of Maryland, College Park, in
1998. From September 1999 to August 2004, he was with the
Graduate School of Information and Communication, Ajou Uni-
versity, Suwon, Korea. Currently he is a member of the faculty
in the School of Electrical Engineering, Korea University, Seoul,
Korea. His current research interests include database, multi-
media system, music retrieval, medical image analysis, and web
application.

Young Ik EoM received his B.Sc, M.Sc. and Ph.D. degrees
from the Department of Computer Science and Statistics of Seoul
National University in Korea, in 1983, 1985 and 1991, respec-
tively. He was a visiting scholar in the Department of Infor-
mation and Computer Science at the University of California,
Irvine from Sep. 2000 to Aug. 2001. Since 1993, he has been
a Professor at Sungkyunkwan University in Korea. His research
interests include system software, distributed computing, mobile
agent systems, and system security.

Hoh Peter IN is an Associate Professor in the College of Infor-
mation and Communications at Korea University. His primary
research interests are in requirements engineering, value-based
software engineering, situation-aware middleware, and software
security management. He received his Ph. D. in computer scien-
ce from the University of Southern California.




