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Abstract. In a ubiquitous information environment, massive number of users carry-
ing their portable computers can retrieve information anywhere and anytime using
wireless mobile computing technologies. Wireless data broadcasting as a way of dis-
seminating information to the large number of clients, has an inherent advantage
by providing all types of users global access to information. An adaptive access
method, which tolerates the access failure, has been proposed in an error-prone
mobile environment. However the influence of version bits to deal with the updates
of the broadcast data has not been exploited for the broadcast with modified but
the same size and structure update. The basic idea is to distinguish the type of
update that does not influence the change in the size and structure of the broadcast

has been introduced. To deal with the types of updates, we classified the users
in mobile computing environment into the users in system and the new users. In
the proposed continuous algorithms, the user in systems record the previous result
and use it efficiently to access the desired records with less number of probes in
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the broadcast, which is updated by a stream of same size and structure bits. In

the performance analysis, the experimental results show that the proposed modified
progression method has the best performance, as it requires the minimum cost to
access the broadcast data.

Keywords: Data broadcasting, energy conservation, fault tolerance, mobile com-
puting, version number

1 INTRODUCTION

Mobile Computing and wireless networks are the potential technologies, which are
making an environment conducive for ubiquitous computing. In this environment,
mobile users equipped with compact battery powered palmtops or laptops need to
access the large volume of data stored in fixed network through Mobile Support Sta-
tion [17, 18] by the wireless communication. Mobile Support Station is augmented
with a wireless interface to communicate with the mobile units, which are located in
a geographical area within the reach of radio coverage. This area is known as a cell.
In this environment, user no longer requires maintaining a fixed and known position
in the network and enables unobstructed mobility from one cell to another cell while
accessing data. A cell could be a wireless local area network, which operates within
the area of a building or a small complex. In the general architecture [21] that sup-
ports mobile wireless computing, fixed hosts communicate over the fixed network,
while the mobile units communicate with other hosts (whether mobile or fixed) via
a wireless channel. During this, a new aspect arises when the mobile user has to
move during the execution of a transaction and continue its execution in a new cell.
This mobility is one of the characteristics of mobile computing. There are a number
of other special characteristic features in mobile computing environment that make
the system unique in the sense of application development. These characteristics
are as follows:

Communications Asymmetry: In a wireless communication environment, the
bandwidth from server to clients on the downstream channel is significantly
higher than the bandwidth available in the reverse direction on the upstream
channel. Asymmetry can also arise due to service load asymmetry in which few
servers support much larger client population. The third way that asymmetry
arises is from the significant difference in the volume of data that is transmitted
in each direction.

Frequent Disconnections: Users disconnect from the network by switching off
their units as a power saving measure. They switch their terminals on and off
regularly as they have the ability of selective tuning. Wireless connection also
suffers with frequent interruptions either due to the exhaustion of battery power
or to external electromagnetic disturbances such as lightning, spikes of short
duration (this kind of noise is noncontinuous consisting of irregular impulses).
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Limitation of Resources: The portable units have limited computing power.
Compared to fixed wired network, the transmission bandwidth in wireless mo-
bile communications is relatively small. The units have limited battery power
and small storage capacity (compressed data use less memory). However, com-
pression of data cannot be encouraged in mobile computing environment, as the
battery power consumption is twice as expensive to decompress than to com-
press. Limitation also exists due to small screen size of the Personal Digital
Assistants.

Each of these features has its own impact and poses new challenges in the ef-
ficient management of data in a system. These physical restrictions call for power
and bandwidth efficient solutions both at hardware and software levels [8]. An in-
herent asymmetry in the communications (where downstream bandwidth is much
greater than the upstream one) and the restriction in power that the mobile units
have, make the model of broadcasting data to the larger set of clients a remarkable
proposition. This is known as data dissemination [12, 15, 30]. In each wireless
cell, there are two basic forms of data dissemination: Broadcasting mode and On-
demand/Interactive mode. In broadcasting mode data are periodically broadcast on
the downlink channel1 and the users retrieve their data of interest by just listening
to a certain channel. Broadcasting over a wireless medium is also a power saving
technique from the end-user’s point of view, since they do not have to resort to
the power consuming uplink transmission but only listen to the data broadcast over
the downlink channel. In an on-demand mode (a traditional client-server approach)
a client requests for the data on the uplink channel2 and the server responds by
sending the data of interest on the downlink channel. In this paper, we consider the
wireless data broadcasting as a way of disseminating the information to numerous
users. Other recent application of data dissemination include Advanced Traveler
Information Systems [28], dissemination using satellite networks [9, 16] including
two stage data delivery [11], PointCast’s webcasting [26], Marimba’s Castanet [25]
and Teleglobe and AT&T Systems’ Internet Delivery Service [29].

In a mobile environment, broadcasting is a powerful medium where information
is broadcast to a potentially large set of users. Moreover, the cost of broadcasting
over the wireless does not depend upon the number of users who are listening.
Therefore this wireless medium is almost an ideal choice for any public information
service. Broadcasting also cuts down the number of separate but identical responses
to requests, as there are several examples of queries, which are asked frequently and
repetitively by a large number of users. Stock market data, local traffic information,
weather information, events and news are all examples of information that would
rather be broadcasted than to be provided on-demand basis. The periodicity file is
very large and if the data record of interest constitutes only a very small portion

1 Downlink channel refers to the bandwidth reserved for the information flow from
server to the clients.

2 Uplink channel refers to the bandwidth reserved for the information flow from clients
to the server.
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of it, the user will have to wait (in the worst case) for a period of time equal to
the broadcasting time of the entire file. Therefore the index information should be
provided along with the data such that the timing of the relevant data record being
made available can be predicted. Hashing can also be used to predict the availability
of the relevant data record. To conserve the battery power of a mobile unit so that it
can run for a long time, a concept of ability of selective tuning was introduced [20].
This means the mobile unit comes into active mode3 or tunes into a channel only
when the data of relevance is expected to arrive and slips into doze mode for most
of the time.

1.1 Related Work

A repetitive broadcast medium for database storage and query processing was in-
vestigated in a Datacycle project [15] at Bellcore. Datacycle was intended to exploit
high bandwidth, optical communication technology, in which the user queries the
data by filtering relevant information using a parallel transceiver capable of filtering
data. A system called Boston Community Information System (BCIS) is described
in [14] where BCIS broadcasts newspapers and information over an FM channel to
the users with personal computers (connected to continuous power supply) equipped
with the radio receivers. Both Datacycle and BCIS systems are based upon flat disk
approach in which the expected waiting time for an item on the broadcast is the
same for all items (half of the broadcast period).

The Broadcast Disk structure [1, 2, 3, 4, 5, 6, 13, 31] incorporates two com-
ponents: a) a multi-disk structuring mechanism that allows non-uniform broadcast
where bandwidth can be allocated to data items, and b) several data caching and
prefetching policies, and update mechanism which supports the multi-disk broad-
cast. In [19] non-uniform broadcast strategies for data items with different access
frequencies were provided. To schedule the content of the broadcast data, a demand
based random function was used for the various records.

Mobile Computing Group at Rutgers [18, 21] focus on the data broadcasting
in mobile environment in which they discussed the different index allocation tech-
niques in order to reduce the battery power consumption at mobile clients. In this
a broadcast is constituted when the version of the file containing the data records is
interleaved with the index information. In a network transmission, the basic unit of
message transfer is a packet whereas fixed number of packets constitutes the smal-
lest logical unit of a broadcast. The smallest logical unit of a broadcast is known
as a bucket and each bucket is a unit of information, which is sent on the broadcast
channel. There are two types of buckets in a broadcast, index buckets and data
buckets. Index information is contained in index buckets whereas data should be

3 The time taken by CPU for shifting from doze mode to the active mode or vice-versa
is known as set up time. It also refers to the time needed to switch the receiver on.
Generally the set up time is negligible compared to the time it takes to broadcast a single
bucket.
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stored in data buckets. Thus, each broadcast consists of number of index and data
buckets, and broadcast cycle is constituted with each version of data file interleaved
with the index information. In the broadcast considered by the Computing Group at
Rutgers, every data record appears only once. This broadcast is known as uniform
broadcast. Power consumption to retrieve the required data is the estimated value
of tuning time (the amount of time the user has to spend listening to the channel)
and the response time is measured by another parameter, access time (the amount
of time elapsed from the time when the user makes a request and the time when the
required record is downloaded in a mobile unit). These parameters (tuning time and
access time) are addressed in [20, 22]. In [20], an index allocation method called
distributed indexing was exploited by efficient multiplexing of a data file with its
clustering index. Distributed indexing scheme achieves almost the optimum (mini-
mum) access time. To minimize the battery power, non-clustered indexing scheme
for allocating static files and multiple indexes were proposed in [21]. In [23], sig-
nature technique to filter information of interest was proposed. Chen et al. in [7],
and Saxena and Arora in [27] exploited the use of imbalanced tree based on variant
index fanout for the skewed data to reduce the average cost of index probes. In
their approach, where technique of Huffman tree was applied, most frequently ac-
cessed (hot) data require fewer probes. Mobile environment suffers from frequent
occurrence of access failures due to communication noises, disconnections, etc. To
address this problem, recently Lo in [24] proposed an adaptive access method, which
tolerates the access failures.

The main contributions of this paper are a) the identification of the types of up-
dates in a broadcast data and b) based upon the type of updates various continuous
processes to deal with the updates for a set of one group of users are proposed. This
can be achieved by caching at the client in the form of an artificial pointer. These
algorithms are aimed at reduction of the tuning time. Our approach also works well
in an error-prone mobile environment as it has a characteristic to tolerate the access
failures. The organization of our work in this paper is as follows: in Section 2, we
discuss the basics of distributed indexing scheme and an overview of an adaptive
access method. In Section 3, the problems with the data file version number which
depends upon two types of updates is identified, and on the basis of types of update
of the broadcast data, users can be classified into two groups. Various algorithms
for continuous processes for one set of users are discussed in Section 4. Section 5
presents the access methods for handling the updates of broadcast data. In Sec-
tion 6, performance comparison of the access methods is examined by performing
a series of evaluations.

2 ADAPTIVE ACCESS METHOD: AN OVERVIEW

In this section, we first briefly discuss distributed indexing scheme used by Lo and
Chen [24] in a method known as adaptive access method. An overview of the
progression method is also given in this section. In this method distinct buckets are
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used and identified by their addresses using the sequence numbers. Therefore, the
significance of sequence numbers is also discussed here.

2.1 Sequence Numbers

Each bucket of the current broadcast has an identification number called the ad-
dress of the bucket – the sequence number of this bucket within the current bucket.
These sequence numbers are unsigned integer numbers from 0 (first bucket of the
broadcast) to max seq no, i.e., the last bucket in the current broadcast. The se-
quence number of a bucket can be interpreted as a relative distance in buckets of
this current bucket from the first bucket of the broadcast. This header information
is contained in each bucket. The offset of a bucket C from the current bucket is
computed as the difference between the sequence number of C and the sequence
number of the current bucket. We can also confirm whether the current access in
an access sequence is out of sequence by recording the sequence number of the next
bucket to be retrieved. Hence it can be used in detecting an interrupt affected by
various noises.

Let us now present an overview of the distributed indexing an EPR scheme
underlying the importance of sequence number while identifying the buckets.

2.2 An Introduction of Distributed Indexing and EPR Scheme

The distributed indexing [20] and [21] is a novel way of organizing a file and its
index on a broadcast channel. In this algorithm, an index tree with M as its arity
(Figure 1) is multiplexed with the data by subdividing it into two parts – a) the
replicated index and b) the non-replicated index. The replicated index constitutes
the top r levels of the index tree, while the non-replicated index contains the rest of
the (L− r) levels. The index buckets at the (r+ 1)th level are called non-replicated
roots and are collectively denoted by NRR. In each broadcast every index subtree
rooted in NRR appears once in the whole broadcast. In an Entire Path Replication
(EPR) scheme let us define

Rep(ari): replicated path from root of the index tree to the non-replicated bucket ari
(excluding a bucket ari), i.e.,

Rep(ari) = (R, a1,l(1), a2,l(2), . . . , ar−1,l(r−1)) where (j − 1) < i ≤ jM ;

j = 1, 2, . . . ,M r−1

and

ℓ(s) =
⌈

i

M r−s

⌉

, s = 1, 2, . . . , r − 1.

Ind(ari): buckets of the subtree rooted at ari by the level order traversal (includ-
ing ari), i.e., for i = 1, 2, . . . ,M r,

Ind(ari) = (ari, (ar+1,M ·(i−1)+1, . . . , ar+1,i·M), (ar+2,M2
·(i−1)+1, . . . ,



Continuous Access of Data And Artificial Pointers 479

ar+2,i·M2), . . . , (aL−1,ML−r
·(i−1)+1, . . . , aL−1,i·ML−r))

Data(ari): Data buckets indexed by ari (from left to right), and

Segment(i): ith broadcast segment that is constituted for iteration of a loop.

Broadly, the following algorithm gives the organization of the data file and index
information into a broadcast format under the distributed indexing scheme.

Fig. 1. An index tree

Procedure: Initialization of the broadcast under EPR Scheme.
Begin

1. Initialize r. /* level r is for for the separation of index tree
into replicated index and non-replicated index */
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2. Collect Non-replicated Roots NRR = {ar1, ar2, . . . , arn}.
/* where n = M r */

3. Broadcast = ‘Null’.
4. For i=1 to n

begin

Segment(i) = Rep(ari) || Ind(ari) || Data(ari).
/* || denotes concatenation */

Broadcast = Broadcast || Segment(i).
end.

End.

In the above procedure, each broadcast segment is constructed for iteration of
a loop. Every bucket in the broadcast is self-identifying and contains the following
information:

• Bucket id (sequence number): The offset of the bucket from the beginning of
the broadcast, i.e. the sequence number of the bucket.

• Broadcast index : The offset to the beginning of the next broadcast cycle.

• Segment pointer : The offset to the beginning of the next broadcast segment.

• Bucket type: Type of the bucket (replicated index bucket, non-replicated index
bucket, data bucket).

• version number : Version bits to deal with updated information of the broadcast
cycle.

The index bucket is arranged as a sequence of (pointer, attribute value), i.e.,
(Pi, ki), where Pi be a pointer to the bucket that contains the record identified by
attribute value ki. Therefore the offset value of a bucket T from a current bucket B
is computed as a difference between the bucket id of T and the bucket id of B, i.e.,

OFFSET(pointer to T ) = S(T )− S(B).

Also, the first bucket in each broadcast segment has an additional tuple. This
tuple includes the largest attribute value of the previous segment, which is used to
find a data miss (the desired record has already passed and may be available in the
next broadcast) and instruct the user to wait for the next broadcast cycle.

In the rest of this paper, for simplification, we consider an index tree (Figure 2a)
with top two levels of replicated index buckets in an index tree of four levels, and
a broadcast as given in Figure 2b under entire path replication scheme.

Now we present the general access protocol for a record with attribute value k
under an entire path replication scheme as follows:

1. Tune to the current bucket of the broadcast. Get the pointer to the next broad-
cast segment.
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Fig. 2. a) Two replicated level index tree; b) A broadcast cycle under an EPR scheme



482 P. C. Saxena, I. J. Arora

2. Tune in again to the beginning of the next broadcast segment either of the same
broadcast or of the next broadcast. Determine whether a data miss occurs, on
the basis of attribute value k and the largest attribute value of the previous
broadcast segment.

(a) When a data miss occurs, wait until the beginning of the next broadcast.
Tune in to the beginning of the next broadcast and proceed as in step 3.

(b) Tune in again for the appropriate higher-level index broadcast and proceed
as in step 3.

3. Probe the designed index bucket and follow a sequence of pointers to find when
the data bucket containing the first record with k as the attribute value is to be
broacast.

4. Tune in again when the bucket containing the first record with k as the value of
the attribute is broadcast and download all the records with k as the value of
the attribute.

2.2.1 Example of the Access Sequence

To show how this scheme works, we consider the following two cases:

1. If the user wishes to access the desired record from the data bucket 48 and makes
the first probe at data bucket 32, then the access sequence by referencing Figure
2a and Figure 2b and using the access protocol is: 32, fifth R, second a12, a26,
a3,17, and 48. In this case no data miss happens.

2. Similarly the access sequence, when the user makes first probe at 64 and his
desired record is in data bucket 22, then the access sequence is given by: 64,
ninth R, first R, first a11, a23, a38, and 22. Here in this case data miss occurs
and the next broadcast was required.

2.3 Adaptive Access Method

An adaptive access method based on distributed indexing scheme was proposed by
Lo and Chen in [24] that has a feature of tolerance of the access failure. This
follows two principles: a) it keeps the previous search result before the occurrence
of a failure, b) continue an unfinished search as soon as possible. Under an EPR
scheme, it has already been observed that the position (i.e., level number in index
tree) of the replicated index bucket in all the broadcast segments remains the same
as given in Figure 2b. This feature enables us to continue the search by using
these replicates instead of waiting for the next broadcast cycle when a replicated
bucket fails to be retrieved. In this method, the position of the segment containing
the previous replicate in a broadcast cycle is recorded, which can be utilized to
determine whether there is a replicate still available after a certain bucket in the
current broadcast cycle. A mechanism called search range (an area which contains
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the data buckets where the desired record may exist) was given by Lo and Chen [24]
to achieve this goal. The search range may be denoted by [L, U ], where position of
the next bucket to visit in the access sequence is denoted by sequence number L
and the upper boundary of the segment containing the last replicate of a replicated
index bucket is denoted by U . A suitable action whether to continue or to wait can
be decided when the current downloaded bucket is at, or before/after the location
of the expected bucket. A sequence number U is used to verify the availability of
replicated index bucket. For the initial probe, the search range is taken as an entire
broadcast and is updated by each inspection of index bucket during the search.
Assume V denotes the sequence number of the next bucket to visit induced by the
current bucket. Then

L −→is changed to the sequence number V , and similarly

U −→ the sequence number of the last bucket in the segment containing the
last replicate of V th bucket, the V th bucket is a replicated index bucket.

Otherwise U requires no alteration in its sequence number.

2.4 Artificial Offset Value

In this section we modify the search range mechanism [24] to find an offset value
and a formal procedure for obtaining artificial offset value is being given. The
offset of the desired data bucket from the first bucket can be computed using the
sequence number. This artificial offset value temporarily stored in the user’s portable
computer can be used to retrieve data buckets. Assume that one index bucket B
is downloaded and the index information of the index bucket are represented by a
sequence of (Pi, ki). If OFFSET(Pi) denotes the offset value for each Pi and if a
search key is guided by the index pointer Pi of the index bucket B, then the new
search range [L, U ] can be obtained by rule 1, where N is the position of index
bucket B within a broadcast segment, i.e., the level number of the index bucket B
in the index tree.

Rule 1.

• L = S(B) +OFFSET (Pi)

• If ((B is a replicated index bucket)
and (Pi is not the last index pointer)) then
U = S(B) +OFFSET(Pi+1)− (N + 1).

Pointer to a specific/target bucket T from the first bucket within a broadcast
can therefore easily be computed. This offset value provided by specifying the offset
of a bucket T is known as Temporary (Artificial) Offset Value (TOV), which can be
used to retrieve the some information again from any bucket if accessed within the
same time limit and provided the size and structure of the broadcast is not altered
due to any data modification. This temporary offset value P is stored temporarily
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in the memory of the portable computer; therefore it should be applied carefully to
find the relative distance from the first bucket. The TOV changes its value when
any search takes place in an index tree to find a bucket. According to Figure 2a,
an artificial pointer is used to locate the same bucket; this temporary path in the
index tree drawn in dotted lines is mapped to the access sequence in the broadcast
cycle, i.e., pointer to a specific bucket T (target bucket) from the current bucket in
a broadcast can be computed by Rule 2.

Rule 2.

• Q = P − S(B); where P is a TOV.

The search range [L, U ] is modified using Rule 3, when probing an index bucketB
of the broadcast discovers a data miss. This means the desired record do as not fall
after an index bucket B.

Rule 3.

• U = S(B)− 1.

2.4.1 Example of Search Range

Before we proceed further, let us now demonstrate how to update the search range
during the data search. Consider an access sequence as given in example 2.2.1 (data
miss case) and the corresponding changes of search range as shown in Figure 3.

Fig. 3. Search range alterations: a) An access sequence; b) analogous search ranges

For the initial probe, the search range is set as [0,Max seq no], whereMax seq no
denotes that the upper boundary is unknown at present. A data miss is discovered at
the bucket ninth R, which means the desired record has already passed. Therefore,
U is changed to S(71) [the previous bucket of ninth R using rule 3]. At the bucket
first R, the next bucket to visit is induced to be first a11, whereas the second pointer
leads to first a12. Then using rule 1, U = S(first R) + OFFSET(the second pointer
of first R)− (1+1) = S(26), where N = 1 is the level number of the index bucket R.



Continuous Access of Data And Artificial Pointers 485

Alternatively, U → Sequence number of the last bucket in the segment containing
the last replicate of a11, i.e., U → S(26). At bucket first a11, the next bucket to visit
is a23. The pointer pointing to the bucket a23 is the last index pointer of first a11.
Therefore, U requires no alternation. The search range becomes [S(a23), S(26)].
Now for the subsequent non-replicated index, only L requires to be changed.

2.5 Progression Method

We now present a progression method which is based on the search range mechanism
by storing the offset of the bucket from the beginning of the broadcast, i.e., bucket id
of the target bucket T . This provides a temporary offset value (TOV) of the target
bucket T , provided it is used for the data modified with SSS updates only. The
TOV can also be used to compute the offset value of the target bucket T when the
current bucket is not the first bucket. This detailed procedure (whose access flow is
incorporated in a flowchart of continuous process) is based upon the mechanism of
search range, and is presented in the following.

The search range [L, U ], and N are initialized as [0,Max seq no.], and 1, respec-
tively. As we stated earlier, the packet errors in a wireless communication system
occur more frequently, it becomes necessary to keep away from a situation where
access procedure may enter into a long loop due to high frequency of packet errors.
Therefore, in addition, a threshold4 (Max Interrupts) can be defined and incorpo-
rated into an access flow by limiting the maximum number of interrupts to be met
in the access.

1. Assume that a bucket B is downloaded after tuning to a broadcast channel.
Based upon the comparison result of the sequence number of bucket B and
[L, U ], one of the following actions takes place.

(a) If (S(B) ≤ L) then /* next bucket is just downloaded or yet to arrive */

wait for the bucket with the sequence number in the current broadcast cycle
under the less than condition, i.e., To L.

(b) If (S(B) ≥ U) then /* next bucket to visit has passed in the current broad-
cast cycle */

wait for the bucket with the sequence number L in the next broadcast.

(c) If (L < S(B) < U) then /* next bucket to visit has passed but an index
replicate may be available */

begin

If (replicate available within search range [L, U ]) then

wait for available replicate from next broadcast segment and download it

Shift N . /* to the level number of downloaded replicated index bucket */

Set Flag to check data miss, if any.

4 Another threshold can also be defined by limiting the maximum duration for getting
the desired data record.
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else

wait for the bucket with the sequence number L in the next broadcast

cycle(Next L).

end

When the check flag is on, wait for the first bucket of the next broadcast, and
decrease the value of N to the level number after downloading the replicated
bucket and Decrease U .

2. Clients may go into doze mode and tune in at the broadcast to retrieve the
expected bucket containing the data record. Sequence of index pointers Pi is to
be followed to retrieve the data buckets containing the data record.

If (Next bucket to visit is induced to be a replicated index bucket) then

begin

Update LU .

/* L is changed to the sequence number of the next bucket and U is changed to
the sequence number of the last data bucket in the segment containing the last
replicate of the next bucket */

Increase N by 1.

else

Increase L.

/* L is changed to the sequence number of the next bucket&U need not be
changed */

end.

3. Compute the temporary offset value P of the target bucket T .

4. Always modify the values of [L, U ], N , Max seq no, and P according to an
action as given above. Any modification, which is done partially, leads to a false
search of the desired record and wastage of battery power.

3 UPDATES OF BROADCAST DATA

In this section, we present the two types of updates. These updates can be applied
to infer whether the previous loaction (after retaining the previous search result)
results in substantial saving of tuning time. These updates work even when the
access sequence is encountered with the access failures.

In a search range mechanism [24], search range dynamically records the range of
sequence number of buckets where the desired records of data items may exist in the
broadcast. In their approach, the previous search range, which provides the location
information of records, can be applied only to the same version of the broadcast data.
In this case where the replacement of data due to insertion, deletion or modification
that changes the size or structure of the broadcast is given the new version number,
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the search range then becomes invalid for the new version. Therefore, in their
approach, an update that does not constitute any change in size and structure of
data in a broadcast is assigned the same version number. This situation is worse as
the mechanism provided failed to detect an update of data. Consider, for example,
a broadcast, which includes the buckets with the information of the stock prices
during the business hours of the stock market. Frequent transactions of scripts
and varying prices during the business hours require equally frequent updating of
broadcast data. For a script of a particular company, four variables5 considered
are the Company name, Previous closing price, Today’s opening price, and Current
price. Table 1a) shows the stock price of a company X retrieved at 12.45 P.M. from
a broadcast is associated with the version No. 000001.

Considering the prices as given in Table 1b) of company X, an investor (user)
places an instruction for the sale of 500 shares immediately after verifying the same
version number 000001 of the next broadcast cycle. In this deal, he intends to receive
$ 750 less than the estimated value of $ 13375. An interesting aspect of this example
is that the update of broadcast data as in Table 1b) could not be established by
mere inspection of version number. Since the type of update (changes in the values
only) by which the size and structure of broadcast data is not altered, the same
version number is associated with this new broadcast cycle.

Company Name X

Previous Closing Price $ 25.75 Version number 000001
Today’s Opening Price $ 26.75
Current Price $ 26.75

a)

Company Name X

Previous Closing Price $ 25.75 Version number 000001
Today’s Opening Price $ 26.75
Current Price $ 25.25

b)

Company Name X

Previous Closing Price $ 25.75 Version number 000010
Today’s Opening Price $ 26.75
Current Price $ 25.75

c)

Table 1. a) Variable X with initial version number, b) Update without change in version
number, and c) VariableX in a broadcast with change in SSS bits of version number

5 To shorten the data size, any description of variables except for company name can
be discarded. The professional and stock dealers can interpret the values of the variables
of different companies.
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In the kind of updates that do not change the size and structure of the broadcast
data, the decision criteria can be thought of as two ways: (1) The subsequent
broadcast cycle of same size and structure is assigned the same version bits. As
seen in the above example, this violates the correctness as the user fails to detect
the updates of data and is left to deal only with the obsolete data that may result
in wrong analysis, conclusions and decisions. (2) The next broadcast (the same size
and structure), which is a consequence of the replacement of data, is assigned the
new version number. In this situation any old search range is discarded and re-probe
takes place. This seriously affects the efficient retrieval of data and may result in
a substantial increase in the latency and the tuning time.

Hence neither the same version number nor the next version number to the
broadcast when any replacement of data that does not constitute any change in its
size and structure can be used to ascertain correctness about any update of data.

In our method, the two types of updates influencing the version change to the
broadcast data, which occurs under the mobile environment are as follows

Invariant Updates: When there is no change in the size and structure of the
broadcast data due to data deletion, insertion or modification, i.e., Same Size
and Structure Update (SSS Update)

Variant Updates: When the size or structure of the broadcast data is changed,
i.e., Distinct Size or Structure Update (DSS Update).

An approach to detect two types of updates (Invariant and Variant) in a broad-
cast is devised by splitting the version bits into invariant bits and variant bits as
shown in Figure 4.

Fig. 4. Allocation of variant and invariant bits in a version number

In Table 1c) the update of broadcast is depicted by the change in only SSS bits
(last two bits) of the version number. Now the simple formulae are derived to decide
the size of invariant and variant bits that influence the version bits of the broadcast
by giving the maximal disconnection time at which the version change will not be
mistaken.

• Tc: Time for a broadcast cycle.

• Tu: Minimum time interval between two updates of broadcast data.

• Tss: Maximum disconnection time without mistaking the invariant update.

• Tds: Maximum disconnection time without mistaking the variant update.

• Td: Maximum disconnection time without mistaking the version change.
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The maximum number of invariant updates during the period Tss is ⌈Tss/Tu⌉.
Therefore for β and Tss values the following condition holds true

⌈

Tss

Tu

⌉

≤ 2β − 1 =⇒ β ≥ log2

{⌈

Tss

Tu

⌉

+ 1
}

,

similarly
⌈

Tds

Tu

⌉

≤ 2α − 1 =⇒ α ≥ log2

{⌈

Tds

Tu

⌉

+ 1
}

.

If β = 3 and α = 6, then the maximum disconnection time without mistaking
SSS update Tss and DSS update Tds is 7Tu and 63Tu respectively. Assuming Tu is
one minute, then Tss and Tds are 7 and 63 minutes, respectively.

This approach is more advantageous as it detects both SSS and DSS updates
which affect the version number of a broadcast. That is, the version number of the
successive broadcasts depends upon both the types of updates such that decision
can be arrived whether the old search range can be discarded and the re-probe is
applied. The previous search range is used to record the related location information
in the broadcast data, when the successive broadcast is not changed or encountered
with the SSS update only. Hence simply by waiting for the arrival of the bucket we
can retrieve the newly inserted records of the form of SSS update using the same
sequence number in the broadcast cycles.

Thus the retrieval of a record without any re-probe leads to a substantial saving
in the tuning time.

3.1 Users in System

A client who was in listening mode goes into doze mode after successfully accessing
the data and tunes in again at the first replicated index bucket of the next broadcast
cycle, or tunes in again into a broadcast within disconnection time. This disconnec-
tion time is a planned failure when mobile terminal is switched off as a power saving
measure.

The whole idea behind a planned failure is to let user cache the previous search
result and use it judiciously. For this, we define a term user in-system.

A client is said to be in-system if it has retrieved the desired record or probed
a bucket in its access sequence, computed the temporary offset value in its previous
or current search and kept this offset value to resume its unfinished search within
some specified time say disconnection time such that the user can not be mistaken
by the version changes due to the SSS bits.

Thus the maximum time for a client to be in system is min{2α − 1, 2β − 1},
where α and β are the DSS and SSS bits respectively. When a client is in system
it has knowledge of the version number and temporary offset value P of the probed
bucket or a target bucket T . This previous search result can be used to obtain
the possible location of the required data in a broadcast channel and to continue
an unfinished search. On the other side, if a user has switched off its terminal for
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Fig. 5. Types of users in a broadcast

a time; larger than the disconnection time then it should be regarded as a new user.
The distinction between user in system and new user as shown in Figure 5 is also
due to the disconnection time, this disconnection time is the elective6 nature of the
client: any disconnection when the user is in system is a planned failure, which can
be anticipated and prepared.

In the next section, various continuous processes are presented. These processes
are based upon this artificial pointer when the broadcast is updated with the SSS
bits and when the user is in-system.

4 CONTINUOUS PROCESSES

Our main objective of the continuous process is to provide/resumption of the target
bucket from the following broadcasts using search range mechanism. This is true
when the user has already successfully probed and accessed the desired record. This
continuous process is particularly useful for the users who are in-system and wish to
retrieve the updated information of the same variable. The temporary offset value P
can be used for continuous search provided it is used within disconnection time and
when the data modification is due to SSS updates only. This value of P vani-
shes/modifies, when any new search for the buckets takes place or the disconnection
time exceeds its limit, i.e., where all the versions due to either DSS or SSS bits are
exhausted.

6 The term elective was coined and used by Daniel Duchamp, Columbia University.
Tomasz Imielinski and B. R. Badrinath also used this term to distinguish planned failure
and failure.
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We now propose the following ways to continue the process of data records
retrieval. If the user

1. re-acquires the same search result from the next broadcast using the previously
stored range data (i.e., wishes to retain the updated information of the same
variables). In this case the user goes into doze mode and tunes in again to the
beginning of the next broadcast. We define this as a continuous process without
disconnection.

2. disconnects for a certain time (elective disconnection) and tunes in again either
anywhere (except at the beginning) of the next broadcast or at any point in
any of the subsequent broadcasts. It is to retain the updated information of the
same variables, provided the user remains in the system. This is referred to as
continuous process after disconnection.

3. goes for the new search.

4.1 Continuous Process without Disconnection

In this case, after successfull retrieval of the desired record the user does not dis-
connect from the broadcast (but goes into doze mode) and is willing to re-acquire
the same search result as shown in Figure 6. The detailed procedure is as follows:

Procedure: Continuous Access (Without Disconnection from Broadcast)
Begin

1. Initialize L = 0.
2. go into doze mode and wake up on arrival (Wait for the arrival) of the bucket

with the sequence number L in the next broadcast cycle.
3. If (Disconnection time < Limit) then
4. If (change in version bits) then
5. If (change in DSS bits) then
6. go to step 18.
7. Else

8. L = S(B) + OFFSET(P − S(B)).
9. go to step 20.
10. End If.

11. Else

12. No change in data since the previous search.
13. go to step 26.
14. End If.

15. Else

16. go to step 18.
17. End If.
18. Apply progression method for fresh search and obtain TOV ‘P ’.
19. go to step 26.
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Fig. 6. Progression method and continuous access of data without disconnection in modi-
fied progression method
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20. go into doze mode and wake up to retrieve the expected bucket
by following the offset value.

21. If (New bucket downloaded is data bucket) then
22. match the value of the attribute and download the desired record.
23. Else

24. go to step 18.
25. End If.
26. go to step 1 when wish to continue the same track.

End.

4.2 Continuous Process after Disconnection

In the following, we describe the procedure to access the update of the data of the
variable when a client enters into a broadcast within a disconnection time. Tune
to a channel and record the sequence number of the downloaded bucket B. Check
whether S(B) ≥ P , if it is not, wait for the arrival of the either first bucket of the next
broadcast segment (if any) or of the target bucket in the range [S(B), P [. Otherwise,
wait for the arrival of the first bucket in the next broadcast cycle. In case the current
downloaded bucket is replicated index bucket or non-replicated index bucket (except
the last non-replicated index bucket in the given range), then the offset of the
target bucket T from the current bucket is computed as the difference between the
bucket id of T and the bucket id of current bucket. Buckets in each broadcast cycle
are assigned unsigned integer numbers beginning from 0 and bucket id of current
bucket gives the offset of this bucket from the beginning of the broadcast. Therefore
the offset of the target bucket T from the current bucket is P −P ∗, where P ∗ is the
sequence number of the current bucket, i.e., offset value from the beginning of the
broadcast.

When the current downloaded bucket is the last non-replicated index bucket,
or the data bucket then simply wait for the arrival of data bucket and match the
search key to retrieve the data records.

Procedure: Continuous Access (When disconnection is within limit)
Begin

1. If (S(B) ≥ P ) then
2. Wait for the arrival of the first bucket from the next broadcast cycle.
3. Get pointer to the target bucket using artificial pointer ‘TOV’.
4. Download target bucket.
5. Else If (Replicated index bucket available in the range [S(B), P [) then

/* S(P ) < P */
6. tune to the first bucket of the next broadcast segment

in the range [S(B), P [.
7. get pointer to the target bucket using Q = P − P ∗.

/* rule 2, Q = P − S(B) */
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8. wake up to retrieve the required data from the target bucket.
9. Else

10. wait for the arrival of target bucket and retrieve the required data.
11. End If.

End.

The user who has already retrieved the desired record from the bucket with
sequence number S(B) in the just concluded search and who wishes to access a dif-
ferent data record without any disconnection from the channel can do so by a new
search using the progression method.

Now we provide two representative examples (with and without data miss) show-
ing the lower number of probes necessary to retrieve the required information in a
continuous algorithm for the users who are in system. These algorithms are still
applicable in case of the occurrence of frequent access failures due to various com-
munication noises.

The examples shown in Table 2 reveal that the artificial offset value used to
re-acquire the updated record from the same search range performs quite well in the
continuous process. This artificial offset value works well with the new broadcast
which undergoes the process of modification of data values without disturbing the
data size and structure of the broadcast, i.e., the different version number due to
change in the SSS bits for the new broadcast.

5 ACCESS METHODS FOR HANDLING

THE BROADCAST DATA UPDATES

In this section, the divergent methods are presented to deal with the updates of
broadcast data as well as the access failures. We make use of the access sequence
64, Ninth R, First R, First a11, a23, a38, and 22 to elucidate the revival activities
when the bucket a23 contains a packet error and is therefore abandoned.

Re-access: In the re-access method as given in [24], a user re-accesses the bucket
affected by interrupts. Each affected bucket is re-accessed after verifying the
version bits from the first replicated bucket of the next broadcast. If no change
or change in SSS bits is found, then the affected bucket is re-accessed; otherwise
the user is regarded as new user and accesses the broadcast data right from the
beginning. In our example, since the bucket a23 is re-accessed after verifying the
version number of the following broadcast cycle from the first replicated bucket
First R, the access sequence is changed to 64, Ninth R, First R, First a11, a23,
First R, a23, a38, and 22. Again, if the bucket First R for verifying the version
number is also affected by interrupt, then the access sequence is changed to 64,
Ninth R, First R, First a11, a23, First R, First a11, First R, a23, a38, and 22.
The defect of this method is that the waiting time for reaccessing of the affected
bucket in the next broadcast cycle is very long and is equal to the time for the
broadcast cycle.
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Table 2. Search range changes for new user and the user in system
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Modified Re-access: In modified re-access method, affected bucket are re-acces-
sed only after verifying the version bits from any bucket of the next broadcast.
Similarly, in re-access of the bucket a23 after verifying the version number of the
next broadcast in the second attempt (i.e., when First R or any other bucket
also has a packet error), the access sequence changed to 64, Ninth R, First R,
First a11, a23, First R, First a11, a23, a38, and 22. In this method, 3 broadcasts
are used instead of 4 as seen in re-access method.

This method gives an improvised result in terms of number of broadcasts used,
but suffers with the drawback that it also uses the next broadcast for version
verification.

Progression Method: In this method, if the downloaded bucket affected by a pac-
ket error is a replicated index bucket, it can be recovered by retrieving the
replicated bucket appears in the successive broadcast segment and at the same
position in these segments from the same broadcast. Each of remaining affected
buckets is re-accessed after confirmation of the version number of the next broad-
cast from the replicated index bucket. Consider a bucket a23 contains a packet
error; the changed access sequence becomes 64, Ninth R, First R, First a11, a23,
First R, a23, a38, and 22. Again, if the bucket required for verification of the ver-
sion number is also afflicted by the packet error, then it can be confirmed from
the replicated bucket appearing in the next segment but at the same position,
the access sequence is given by 64, Ninth R, First R, First a11, a23, First R,
First a11, Second R, a23, a38, and 22. In this case bucket First a11 is used to get
the pointer to the next available replicate of First R.

Modified Progression: In modified progression, the confirmation of version num-
ber takes place at any of the bucket of the next broadcast. The changed access
sequence when downloaded bucket a23 contains a packet error and confirmation
of version number is completed in the second attempt; then the access sequence
becomes 64, Ninth R, First R, First a11, a23, First R, First a11, a23, a38, and 22.
Since, in modified progression, there is no restriction on the type of bucket for
confirmation of version bits of the next broadcast, the waiting time and the
tuning time require to download a bucket for confirmation is not as long as in
the progression method. This results in an improvised cost in terms of tuning
time.

6 PERFORMANCE COMPARISONS

In this section, we address the important parameters, which affect the performance
of the different access methods. Specifically, we investigate the performance of the
access methods (re-access, modified re-access, progression, and modified progression)
by evaluating the cost of accessing the broadcast data in the subsequent broadcasts
with respect to the number of levels of replicated index buckets from the top of
an index tree (r) and to the probability of the downloaded bucket containing an
error (q). In our performance analysis updates are performed and the update (if
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any) from the following broadcasts is identified by the version bits of the broadcast
data. Therefore a broad parameter ‘number of broadcasts used’ may measure and
replace a metric ‘access time’. In the following, we list parameters to be used in
obtaining the analytical expressions for performance comparisons.

Parameters: Consider a broadcast under an EPR scheme using a fully balanced
index tree where the smallest unit for measuring the broadcast data is bucket.

• L: The depth of the index tree excluding the set of data buckets.

• M : Outgoing pointers of each index (replicated/ non-replicated) bucket.

• r: The number of top levels of an index tree which constitute the replicated
part.

• INDEX : Size of an index of a broadcast cycle.

• DATA: Size of the data in a broadcast.

• SEGMENT : Size of a broadcast segment.

• BCAST : The size of a broadcast cycle i.e., BCAST = INDEX+ DATA.

• p: The probability of success i.e., the probability that a downloaded bucket does
not contain an error.

• q: The probability that a downloaded bucket containing a packet error (q =
1− p).

SEGMENT is the sum of the number of buckets from the root of an index tree
to the non-replicated index bucket and all buckets (including data buckets) of the
subtree rooted at the non-replicated bucket. Therefore

SEGMENT = r +
ML−r+1 − 1

M − 1
,

and BCAST is the product of the number of non-replicated index buckets and the
size of the broadcast segment

BCAST = rM r +
M r(ML−r+1 − 1)

M − 1
.

From the above, it is seen that the number of buckets of the subtree rooted at the
non-replicated bucket and the size of the broadcast segment decreases as r grows,
whereas the size of the broadcast cycle increases when r increases.

Assumptions:

• We consider an EPR scheme for a broadcast, where the data file is associated
with the fully balanced index tree.

• Updates can be performed on the broadcast data; but, to simplify the analysis,
the size of the broadcast cycle (BCAST ) for each broadcast is the same, but the
structure may be different (i.e., BCASTi = BCAST ∀i).
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• Data misses may happen in multiples in an access methods; this is ignored to
simplify the procedure.

• Since the packet error has some inheritance properties: Occurrence of an error
in each position has equal probability and independence of errors in different
positions. Moreover, q is independent of the size of the BCAST ; therefore we
consider packet errors as interrupts in our analysis.

In the next subsection, we use an access graph to develop an analytical model,
which helps in measuring the cost of accessing the broadcast data.

6.1 Analytical Expression for Dealing with Updates

An access graph in the form of a state transition diagram is used for illustrating
the process of searching the broadcast data. It has two types of edges, solid lines
(transition with correct access) and dotted lines (transition with false access) [24].
The labels on each edge indicate transition cost in buckets for evaluating the tun-
ing/access time. In our performance analysis, the sensitivity of the broadcast data
in successive cycles due to update of data results in the increase of the cost of ac-
cessing broadcast data in terms of access and tuning times. This is mainly due
to the checking of version (SSS and DSS) bits of the successive broadcast cycles.
These successive broadcasts are used when the downloaded bucket7 contains packet
error. Therefore the cost of accessing the broadcast data using the buckets from
the successive broadcasts can be measured by a) the ‘number of broadcasts used’
instead of access time, and b) by the tuning time. This tuning time is proportional
to the number of downloaded buckets.

Tuning Time = The number of visited states on the path from 0 to L+ 1.

The upper limit of the number of visited states on the path is the depth of the
index and two additional buckets. The additional buckets are a) the first probe
bucket, and b) the result data bucket (the third additional bucket is the first bucket
of the broadcast data when a data miss happens). Similarly the buckets from the
one broadcast (two broadcasts when data miss happens) are used for accessing the
broadcast data. The boundary of both the tuning time and the number of broadcasts
used (herein referred to as Tuning and Broadcasts respectively). These metrics, the
tuning and the broadcasts for the normal access graph can be obtained by the
relations

Tuning =
L+1
∑

i=1

si = L+ 2,

and
Broadcasts = 1.

7 This bucket may be a replicated bucket (when its replicate is not available in the
current broadcast), non-replicated bucket or a data bucket.
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Similarly, for continuous access of the bucket at the same location when broadcast
is updated with the SSS bits and when the user is in system, the following relations
can measure the cost of broadcast data for the Ideal access graph:

Tuning =
L+1
∑

i=1

si = L+ 3,

and
Broadcasts = 2.

The other cost parameters additional tuning, tuning ratio, additional broadcasts,
and broadcasts ratio are also defined to justify the importance of the continuous
access of broadcast data in various methods; these are defined when the user is in
system, and the next broadcast has the same version or is updated with SSS bits
only. The additional tuning (broadcasts) is the cost required to re-access the same
data bucket or the bucket at the same location from the next broadcast; the tuning
(broadcasts) ratio is the ratio of additional tuning (broadcasts) to that of the tuning
(broadcasts) for the successful data access from the beginning using the same access
method.

In the following, we analyze the cost for the access methods in terms of tuning,
broadcasts, tuning ratio, and broadcast ratio. If the average number of errors re-
peatedly occurring at the same bucket is denoted by ERR, then it can be obtained
using a parameter q as follows:

x(number of errors) : 1, 2, 3, . . .

Probability p(x) : q, q2, q3, . . .

ERR = E(X) =
∞
∑

x=1

x · p(x) =
∞
∑

x=1

x · qx =
q

(1− q)2
.

The tuning and broadcasts can be divided into two parts: a) the false part, and
b) the correct part. In the process of finding the cost of broadcast data, the dotted
lines above the solid lines give the broadcasts used (Figure 7).

6.1.1 Reaccess

In the re-access, there are two kinds of access graphs (Figure 7a). Type 1 indicates
the first probe whereas Type 2 indicates the cases for replicated and non-replicated
index. The recovering cost from all false accesses for both the types is as follows:

Type 1: ERR

Type 2: ERR · (1 + nc · ERR+ 1),

where nc is the cost of reaccessing the same bucket in the following broadcast cycle.
The relation to compute the cost of false tuning part is as follows:
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Fig. 7. a) Access graph for a reaccess method; b) Access graph for modified reaccess
method; c) Access graph for modified progression

FalseTuning = ERR · 1+ERR · (1+ nc ·ERR+1)+ . . .+ERR · (1 + nc ·ERR+1)

= ERR[1 + (L+ 1) · (nc · ERR+ 2)].

The tuning and the broadcasts, when nc = 1, are given by

Tuning = ERR[1 + (L+ 1) · (ERR+ 2)] +
L+1
∑

i=1

si

= ERR[1 + (L+ 1) · (ERR+ 2)] + (L+ 2)

Broadcasts = 1 + ERR · (ERR+ 1) · (L+ 1).

Similarly, for continuous access of the bucket at the same location when broadcast
is updated with the SSS bits and when the user is in system, then

Tuning = ERR[1 + (L+ 2) · (ERR+ 2)] + (ERR+ 1) + (L+ 3)
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Broadcasts = 2 + ERR · (ERR+ 1) · (L+ 2) + ERR.

The other cost parameters (tuning ratio, broadcasts ratio) are given as follows:

Tuning Ratio =
(ERR+ 1)(ERR+ 2)

ERR · [1 + (L+ 1) · (ERR+ 2)] + (L+ 2)

Broadcast Ratio =
(ERR+ 1)2

1 + ERR · (ERR+ 1)(L+ 1)
.

6.1.2 Modified Re-access

In this method, verification of version bits takes place at any of the buckets; accord-
ingly, the modified access graphs are shown in Figure 7b).

The cost in this case is given by

Tuning = ERR · 1 + ERR · (ERR+ 2) + . . .+ ERR · (ERR+ 2) + (L+ 2)

= ERR · [1 + (L+ 1) · (ERR+ 2)] + (L+ 2)

Broadcasts = 1 + (L+ 1) · ERR.

Similarly, for continuous access, the cost of accessing the broadcast is

Tuning = ERR · [1 + (L+ 2) · (ERR+ 2)] + (ERR+ 1) + (L+ 3)

Broadcasts = 2 + (L+ 2) · ERR

Tuning Ratio =
(ERR+ 1)(ERR+ 2)

ERR · [1 + (L+ 1) · (ERR+ 2)] + (L+ 2)
,

and

Broadcast Ratio =
(ERR+ 1)

1 + (L+ 1) · ERR
.

6.1.3 Progression and Modified Progression

With the objective to minimize the cost of accessing broadcast data, modified pro-
gression method (as in the modified reaccess) does not put any condition on the
type of buckets for verification of version bits. If ni is the cost of finding the next
index replicate at level i of the index tree, then for the progression method

Tuning = ERR · 1 +
r

∑

i=1

ERR · (1 + ERR+ ni) + nc · (L− r + 1) · ERR

+
L+1
∑

i=r+1

ERR · [ERR · (1 + ERR+ ni) + 1] + (L+ 2).
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For ni = 1 and nc = 1,

Tuning = ERR · 1 +
r

∑

i=1

ERR · (ERR+ 2) + (L− r + 1) · ERR

+
L+1
∑

i=r+1

ERR · [ERR · (ERR+ 2) + 1] + (L+ 2)

Broadcast = 1 + (L− r + 1) · ERR.

For continuous access,

Tuning = ERR · 1 +
r

∑

i=1

ERR · (ERR+ 2) + (L− r + 2) · ERR

+
L+1
∑

i=r+1

ERR · [ERR · (ERR+ 2) + 1]

+ (ERR+ 1) · [ERR · (ERR+ 2) + 1] + (L+ 3))

Broadcast = 2 + (L− r + 2) · ERR

Tuning Ratio =

ERR+ (ERR+ 1)3 + 1

ERR · 1 + r · ERR · (ERR+ 2) + (L− r + 1) · ERR[(ERR+ 1)2 + 1] + (L+ 2)
,

and

Broadcast Ratio =
(ERR+ 1)

1 + (L− r + 1) · ERR
.

In modified progression, the three types of access graphs (for the initial probe, the
replicated index and the non-replicated indexes, respectively are shown in Figure 7c).
Then the cost factors are

Tuning = ERR · 1 +
r

∑

i=1

ERR · (1 + ERR+ ni) + nc · (L− r + 1) · ERR

+
L+1
∑

i=r+1

ERR · (1 + ERR) + (L+ 2).

Again, when ni = 1 and nc = 1,

Tuning = ERR · 1 +
r

∑

i=1

ERR · (ERR+ 2) + (L− r + 1) · ERR

+
L+1
∑

i=r+1

ERR · (1 + ERR) + (L+ 2)

Broadcast = 1 + (L− r + 1) · ERR.



Continuous Access of Data And Artificial Pointers 503

For continuous access,

Tuning = ERR · 1 +
r

∑

i=1

ERR · (ERR+ 2) + (L− r + 2) · ERR

+
L+1
∑

i=r+1

ERR · (1 + ERR) + (ERR+ 1)2 + (L+ 3)

Broadcast = 2 + (L− r + 2) · ERR

Tuning Ratio =

1 + ERR+ (ERR+ 1)2

ERR+ r · ERR · (ERR+ 2) + (L− r + 1) · ERR · (ERR+ 2) + (L+ 2)
,

and

Broadcast Ratio =
(ERR+ 1)

1 + (L− r + 1) · ERR
.

6.2 Experimentation

Progression and modified progression methods have the capability of fault tolerance
due to their characteristics of using the available replicates. In these, the repli-
cated index buckets increase as r increases. This, however, increases the size of the
broadcast cycle. We try to address the parameters affecting the performance of the
access methods by performing a series of evaluations of the analytical expressions
obtained earlier in this paper. To use the available replicate from the next seg-
ment, the error probability q should be contained in such a way that the condition
ERR ≤ SEGMENT− 1 is satisfied. The cost of ideal access of broadcast data with-
out any access failure and data miss is also given for reference in our experiment.
This ideal access is denoted by Ideal. To compare the different access methods, we
set the different parameters for performance evaluations in the experiments as given
below:

• R: Threshold in the form of maximum number of broadcasts when no change
in DSS bits is assumed = 16.

• E: Average threshold without any change in the DSS bits = R/2 = 8.

• L: The depth of index tree excluding the set of data buckets = 5.

• r: The number of top levels of an index tree which constitute the replicate
part = 1 ∼ 5.

• q: The probability that a downloaded bucket contains a packet error = 0.05 ∼
0.4

• M : Outgoing pointers of an index bucket = 64.



504 P. C. Saxena, I. J. Arora

Experiment 1. The effect of q for the number of broadcasts used to access the
broadcast data is shown in Figure 8a). The progression and modified progression
methods, which employ the index replicate, perform equally well when compared to
other methods. The broadcasts rapidly grow up with higher error probabilities in
a re-access method, because more errors cause more cycle waits. Modified re-access
is slightly better, as it makes use of any bucket for version bits verification. In
re-access method, the average threshold limit is reached and restarts take place
after establishing the change in version bits of the broadcast, this also increases
the access time in the form of broadcasts used. A user enters into a broadcast and
searches for a desired record. He remains in system after the retrieval of data record,
uses the just concluded search result to continue the retrieval of the same variable
till the average threshold limit with respect to the number of broadcast (E = 8)
where the broadcast is updated with the SSS bits. In this continuous retrieval of
data, Figure 8b) shows the effect of q for the number of successes where the modified
progression and progression methods give higher performance than the other two
methods.

Experiment 2. In this experiment, the effect of q for the tuning time is shown
in Figure 9a). Although tuning time in each case increases with q (except Ideal).
The modified progression gives better results (though cycle wait becomes dominant
and vital when q attains larger value) as it uses the index replicate in the same
broadcast when the affected downloaded bucket is a replicated bucket, taking into
consideration that modified progression uses less number of broadcasts (as given the
previous experiment) and less number of buckets to be downloaded to complete the
access of broadcast data. Our proposed method, i.e., modified progression, provides
higher performance than the rest of the access methods. The effect of q for the
average tuning time in a continuous process (when the user remains in system) is
shown in Figure 9b). This average is computed when a user enters into a broadcast
as a new user and remains there for (R + E =) 24 broadcasts. As observed in
Figure 9b) the performance degrades more rapidly in all the access methods except
the modified progression.

It is also observed (Figure 9c) in a continuous scheme the modified progression
gives higher performance in terms of the average number of buckets (average tuning
time) used to retrieve the desired information. It is observed that the average tuning
time at the end of nRth broadcast (n is a positive integer) is minimum, whereas it
rises for the broadcasts (nR+1), (nR+2), . . . , and (nR+[b]) where b is the number
of broadcasts used to access the desired data record for the new user and [b] is the
maximum integer value contained in b and b ≤ R. As seen in Figure 9c), average
tuning time attains its maximum (for each cycle of R broadcasts) at the (nR+[b])th

broadcast. When the user continues its access of data for a long time, i.e., when n is
large, the average tuning time at (nR + [b])th broadcast converges to the average
tuning time at the nRth broadcast.

Experiment 3. The previous two experiments have revealed that the modified
progression provides finer results in terms of tuning time and broadcasts with respect
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a)

b)

Fig. 8. a) Broadcasts as a function of q (New User); b) Number of successes as a function
of q in continuous process (User in System)

to q. Now in this experiment we consider the effect of r for modified progression
method. As shown in Figure 10, we observe the effect of r for the broadcasts when
q = 0.1, 0.25, and 0.4. The tolerance of modified method increases with r, and
its performance in terms of broadcasts approaches to that of Ideal, i.e., it exploits
less broadcasts to access the data. Another facet of an increase of r is that it also
increases the BCAST ; a false access on the non-replicated index involves a cycle wait
before downloading a bucket from the next broadcast for testing the version number
and resuming the search. As r increases, the cycle wait becomes longer, whereas
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a)

b)

c)

Fig. 9. a) The tuning time as a function of q; b) Average tuning time as a function of q in
continuous process; c) Comparison of average tuning w.r. to number of broadcasts in
continuous access in a long term basis
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the number of non-replicated index buckets becomes smaller and more replicated
buckets can be recovered from errors by employing their replicates so as to reduce
the number of broadcasts used to access the broadcast data.

Fig. 10. The number of broadcasts as a function of r

7 CONCLUSIONS

In this paper, we investigated the access methods for the indexed data broadcasting
in the mobile environment. Four methods (reaccess, modified reaccess, progression
and modified progression, based upon the EPR scheme), are presented. In our
numerical work, we have shown that our modified progression method gives best
result for the cost of accessing broadcast data in terms of access time (here we
measure it by the number of broadcast used) and the tuning time. In the wireless
medium the occurrence of access failure tends to affect the data, and then we make
use of the previous result and the index replicate available to shorten the time for
recovering from an error in a progression method. In this the search range is used
to record the location information in the broadcast data. This location information
should be applied either to the same version of the broadcast data or the broadcast
which is updated by SSS bits only (retaining previous DSS bits). We have also
demonstrated that the modified progression method is more advantageous as it uses
any kind of bucket to test the version number of the successive broadcasts. For
retrieving the same data again or the updated data at the same location when no
change happens in the DSS bits, the user in system incurs less additional cost
in the form of tuning time and broadcasts. This bare minimum additional cost
encourages the user to remain in system for continuous access so that updated
information can be retrieved at less cost. This continuous access of broadcast data
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substantially saves the energy and may find applications in retrieving the stock, and
weather information, etc. Taking into consideration all the experimental results, we
conclude that our proposed modified progression method has the best performance
as it employs the minimum number of broadcasts and a reasonable tuning time.

Acknowledgement

The authors would like to thank the anonymous reviewers for their useful suggestions
that facilitated us to improve the paper to the present form.

REFERENCES

[1] Acharya, S.—Franklin, M.—Zdonik, S.: Dissemination-Based Data Delivery
Using Broadcast Disks. IEEE Personal Comm., Vol. 2, 1995, No. 6, pp. 50–60.

[2] Acharya, S.—Franklin, M.—Zdonik, S.: Balancing Push and Pull for Data
Broadcast. Proc. ACM SIGMOD Int’l Conf. Management of Data, Phoenix, Ariz.,
pp. 183–194, May 1997.

[3] Acharya, S.—Franklin, M.—Zdonik, S.: Disseminating Updates on Broadcast

Disks. Proc. of VLDB Conf., pp. 354–365, India, Sep. 1996.

[4] Acharya, S.—Franklin, M.—Zdonik, S.: Prefetching from a Broadcast Disks.
Proc. of 12th Int’l. Conf. of Data Engg., pp. 276–285, New Orleans, Feb. 1996.

[5] Acharya, S.—Franklin, M.—Zdonik, S.—Alonso, R.: Broadcast Disks: Data
Management for Asymmetric Communication Environments. Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 199–210, San Jose, May 1995.

[6] Acharya, S.—Franklin, M.—Zdonik, S.—Alonso, R.: Disks on Air. Proc.
ACM SIGMOD, 1994.

[7] Chen, M.—Yu, P. S.—Wu, K.: Indexed Sequential Data Broadcasting in Wireless
Mobile Computing. Proc. 17th Int’l Conf. Distributed Computing Systems, Baltimore,
pp. 124–131, May 1997.

[8] Cheriton, D.: Dissemination-Oriented Communication Systems. Technical Report,
Stanford Univ., 1992.

[9] Dao, S.—Perry, B.: Information Dissemination in Hybrid Satellite/Terrestrial
Networks. IEEE Data Eng. Bull., Vol. 19, 1996, No. 3, pp. 12–18.

[10] Duchamp, D.—Reynolds, N.: Measured Performance of a Wireless LAN.
Columbia University, Oct. 1992.
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