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Abstract. Contrary to existing heterogeneous data integration systems which need
to be fully integrated before using, a Dataspace Support Platform is a self-sustained
system which automatically provides for the user its best endeavor results regardless
of how integrated its sources are. Therefore, a Dataspace Support Platform needs
to support uncertainty in mediated schema and in schema mappings. This paper
proposes a novel approach to automatically providing reliable mediated schemas
and reliable semantic mappings in Dataspace Support Platforms. Our aim is to
increase the system’s endeavor results by leading it to considering as much as pos-
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sible information available in any source connected. In fact, we first extract from
the source schemas, their corresponding graph representations. Then, we intro-
duce algorithms which automatically extract a set of mediated schemas from the
graph representations and a set of semantic mappings between a source and a tar-
get mediated schema. Finally, we assign reliability degrees to the mediated schema
generated and to the semantic mappings. Indeed, the higher the reliability degree
of a given mediated schema or semantic mapping, the more consistent with the
source it is. Compared with existing systems, experimental results show that our
system is faster and, although completely automatic, it produces reliable mediated
schemas and reliable semantic mappings which are as accurate as those produced
by semi-automatic systems.

Keywords: Schema matching, mediated schema, semantic mappings, reliability
degrees, dataspace
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1 INTRODUCTION

Dataspace Management Systems [11] describe a platform supporting dataspaces
where a dataspace contains a set of participants from heterogeneous sources of data;
Relational Data Base, XML repository, Excel spreadsheets; and a set of relationships
between those heterogeneous participants. Existing heterogeneous data integration
systems require a full integration of its sources before any service can be provided.
Hence the data integration system knows the precise relationships between the terms
used in each schema. As a result, significant up-front effort is required in order to
set up a data integration system.

Contrary to traditional data integration systems, a DataSpace Support Platform
(DSSP) [10] is a self-sustained system which self-produced its mediated schemas
and schema mappings, self-managed uncertainty among them and which can be
improved incrementally as the system is used or as new sources get connected to the
platform. Hence, the results provided to a posed query are its best endeavor results.
We therefore need to perform an automatic schema matching, extract some useful
relationships between the sources, provide possible mediated schema and semantic
mappings and manage uncertainty among them.

Several methods have been proposed to producing semi-automatically single me-
diated schema for data integration in XML enabled or relational database manage-
ment systems. For example COMA [3] is a system which provides semantic mappings
between two input schemas by combining multiple matchers [17]. Another system,
Similarity Flooding [16] takes two graphs schemas as input, and produces as output
a mapping between corresponding nodes of the schemas. PORSCHE [20] provides
single mediated schema from a set of multiple tree-based input schemas. Some of
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these systems take as input only two source schemas while others take multiple
schemas but they all generate as output a single mediated schema generally with
feedbacks from domain experts. Unfortunately, in the possible application domain
of dataspace, the user might not be skilled enough to manipulate mappers or to pro-
vide accurate mappings. Moreover, the source schemas connected to a dataspace are
of heterogeneous structure, that is, they could be files, relational databases, XML
repositories, web pages and so on. That is why new solutions are needed for data
integration in DSSP.

Authors recently introduced probabilistic schema mappings [2] for data integra-
tion with uncertainty in DSSP. Their method describes a probability over a set of
possible mediated schemas between relational tables. The probability of a given
mediated schema is computed as the ratio between the number of sources the medi-
ated schema is consistent with and the total number of sources. Then, the mediated
schema which has the highest probability is the one consistent with the highest num-
ber of sources. In other words, the less a mediated schema is consistent with a set of
sources, the less the information contained in those sources will be used. To improve
the best effort services [8] produced with probabilistic mapping, we propose to lead
the system self-produce best endeavor results incrementally by assigning degree of
consistency or reliability degree to the mediated schema with respect to each source
and with respect to the whole set of sources.

In fact, since we have several types of schema in dataspace, we first propose to ex-
tract from the source schemas their corresponding graph representations; schemas
are therefore viewed in our system, referred here as KSpace (Knowledge Space),
as graph structures containing terms and their inter-relationships. After that, we
present an algorithm which automatically extracts a set of mediated schemas from
the graph representations; and, instead of finding whether a given mediated schema
is consistent with a source, we compute its reliability degree with respect to the
source. Indeed, the higher the reliability degree of a given mediated schema or se-
mantic mapping, the more consistent with the source it is. In short our contributions
are as follows:

1. To our knowledge, this is the first work that addresses the problem of assigning
reliability degrees to a set of possible mediated schemas to managing uncertainty
in a self-sustained based system.

2. We designed equations to compute reliability degrees of each mediated schema
with respect to a source schema and with respect to the whole set of sources.
These equations depend on the semantic similarity measure between terms used
in both the mediated schema and the source schema.

3. We propose a matching and mapping method named rMedMap which provides
reliable mediated schema (rMed) and reliable mappings (rMap) from a set of
independently constructed source schemas. We argue about the type of rela-
tionship (mutually distinct or not) between the mediated schemas or mappings
generated.
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4. We implement the proposed method and evaluate its feasibility, efficiency, ac-
curacy and performance using extensive experiments.

The rest of the paper is organized as follows: the system overview is introduced in
Section 2, Section 3 describes rMedMap method, Section 4 presents the experiments,
Section 5 discusses the related works and Section 6 concludes the paper.

2 SYSTEM OVERVIEW

2.1 Motivation

We introduce in this section the motivations which lead us to propose a reliability
measure instead of using an existing measure such as a probability measure. Let us
first recall that one of the most important aims to building a DSSP is to provide
the user with basic functionalities like information retrieval or keyword search over
all the sources connected without any domain experts intervention. In other words,
the result of the system’s endeavor should be the best which can be produced;
then the system should exploit as much information as possible that is available in
the sources. Assigning probabilities to mappings or mediated schema is equivalent
to computing the ratio between the number of source a given mediated schema is
consistent with and the total number of sources. Then to compute the numerator
of this fraction, the system should determine whether a given mediated schema
is consistent with a source. Hence, the mapping or mediated schema with the
highest probability will be the one which is consistent with the highest number of
sources. But, a given mediated schema could be consistent with a low number of
sources, therefore its probability will be too low and a system constructed on such
type of measure might not consider the information available in that source; this
might lead to information loss. Therefore, we propose to measure the “degree of
consistency” or “reliability degree” of a mediated schema with respect to a source;
the system can then easily choose the convenient mediated schema when dealing
with a given source. We think that using such measures could lead us to “best
endeavor results”.

For example, let us consider a scenario of 15 source schemas and 4 mutually
distinct possible mediated schemas as shown in Figure 1. In this figure, a line from
a mediated schema Mj to a source schema Si means that the mediated schema Mj

is consistent with the connected source schema Si. Therefore, the reliability degree
of the mediated schema Mj with respect to the source Si noted dMj/Si is greater
than a certain threshold θ. If we choose for example, θ = 0.2 then the probability
of the mediated schema M4: p(M4) = 1

15
= 0.067 ≤ θ and the information in S9

might not be considered by a probability based system while it will be considered
in a reliability based system because dM4/S9 ≥ θ.
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Fig. 1. Motivating example of 15 source schemas with 4 possible mediated schemas

2.2 System Architecture

Figure 2 presents the system architecture. From the sources connected to the DSSP,
the system first extracts their corresponding internal graph representation. After
that, the syntactic, semantic and structural matching can be carried out in order
to deduce semantic and structural relationships between the graph representations.
Then, the semantic and structural relationships are merged together and possible
mediated schemas are produced. Finally, the system computes reliability degrees
of the mediated schemas and reliable semantic mappings can be generated and
transmitted to the query manager.

2.3 Running Example

The possible application domains of dataspace includes Personal Information Ma-
nagement, Web-Scale Information Management and Medical Information Manage-
ment [11]. In an applicative point of view, our objective during our research is to
construct a dataspace for medical information management; especially for African
Traditional Medicine information management. Figure 3 shows an example of two
source schemas describing ingredients used in African Traditional Medicine (ATM).
The ingredients are usually the plant used to prepare potion (traditional-based
drugs). Figure 3 shows common information usually collected about ingredient:
a name which is either a scientific name, a common name or a vernacular name;
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Fig. 2. System architecture

the quantity and the unit used to quantify the ingredient is also specified; and the
region where the ingredient can be found. We are going to use these two schemas
as running example throughout this paper.

3 RELIABLE SCHEMA MATCHING AND MAPPING PRINCIPLE
(RMEDMAP)

In this section, we show how our system performs the matching between the sources.
We also present algorithms used to produce reliable mediated schema between the
source schemas. We formally define a source schema S as a directed graph G =
(V ,A) where V is the set of element names belonging to the source schema and
A ⊂ V × V is the set of parent-child relationships between element names. In the
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Fig. 3. Running example of 2 source schemas in ATM

following subsection we first present the notion of similarity measure between two
element names.

3.1 Information Content Based Similarity Measure

There exist several formulas to compute semantic similarity between element na-
mes [21, 1, 14, 18, 22]. We are not going to improve one of them or to propose
a new formula, but we are going to show how semantic similarity is computed based
on the notion of Information Content (IC). When most of the proposed semantic
similarities are reflexive, the information content based ones are symmetric and
transitive [22]; this justifies our choice of an Information Content based formula.
Therefore, one of the existing information content based formulas can be used in
the sequel to compute the semantic similarity measure noted sim(xi, xj) between
two element names xi and xj.

Most of the existing semantic similarities using IC are improvements of the simi-
larity measure proposed by Resnik in [18]; with the results of the similarity mea-
sure ranging from 0 for terms without similarity to 1. Resnik’s proposed similarity
measure uses a taxonomy or an ontology with multiple inheritance (subsumption
relationships) as the representation model.

In other words, Resnik’s idea for computing similarity measure using a taxon-
omy or an ontology is based on the fact that the more the probability of a concept
increases the more concepts it subsumes, i.e. the higher it is within the taxon-
omy. The information content of a concept can be computed from its probabi-
lity. By analogy to information theory [19], Resnik defines the information content
of a concept as the negative logarithm of its probability; i.e. for a given concept
c, IC(c) = − log(p(c)). The Resnik’s similarity of two concepts ci and cj noted
simResnik(ci, cj) is the maximal information content of all concepts subsuming both
ci and cj: simResnik(ci, cj) = maxc∈s(ci,cj)[− log(p(c))]; where s(ci, cj) is the set of
concept subsuming both ci and cj.
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We therefore introduce the property P defined as follows: if ci ≡δ1 cj and
cj ≡δ2 ck then ci ≡min(δ1,δ2) ck; where the notion of “δ equivalent” noted ≡δ and
respecting the property P is defined as follows: the similarity measure between two
given elements xi and xj noted sim(xi, xj) is equal to δ means that the information
content of their corresponding concepts ci and cj in the taxonomy are δ equivalent
and we note IC(ci) ≡δ IC(cj).

We then use this similarity measure to perform one-to-one matching by com-
puting the tag matching between element nodes names as presented in the following
subsection.

3.2 Reliable Matching Process

Let Si and Sj be two source schemas, let xi, xj be two non-leaf element nodes of
Si and Sj, respectively. Non-leaf element nodes are concepts collected from the
corresponding graph representiations of the source schema which are not leaf on the
graph.

Definition 1. xi and xj are said to be highly similar and we note xi ' xj, if
sim(xi, xj) ≥ θ or if the percentage of the set couples {(xik, xjl) | sim(xik, xjl) ≥ θ}
is greater than ϑ; where xik is a child node of xi, and xjl is a child node of xj; θ and
ϑ are two given thresholds.

Example 1. In Figure 3, considering θ = 0.7 and ϑ = 0.7, the following couples
elements are highly similar: sim(area, region) = 0.83 ≥ θ; sim(country, country) =
0.93 ≥ θ; sim(localName, vernacularName) = 0.78 ≥ θ; sim(reference, location) =
0.51 ≤ θ but {(xik, xjl) | sim(xik, xjl) ≥ θ} = 3

4
= 0.75 ≥ ϑ.

Definition 2. xi and xj are said to be structurally equivalent if they are highly
similar and if the cardinal of the immediate children of xi is equal to the cardinal of
the immediate children of xj.

Example 2. In Figure 3, (ingredient, constituent) are structurally equivalent.

Definition 3. xi is said to be more general than yj if they are highly similar and
if the cardinal of the set of immediate children of xi is greater than the cardinal of
the set of immediate children of yj.

Example 3. In Figure 3, the element name reference is more general than the
element name location.

Definition 4. xi is said to be structurally disjoint to yj if they are not highly
similar.

Example 4. In Figure 3, the element names quantity and name are structurally
disjoint.
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Definition 5. A tag matching tag(xi, xj) is a quadruple

(xi, xj, sim(xi, xj), op(xi, xj))

where:

1. sim(xi, xj) is the semantic similarity between xi and xj.

2. (a) op(xi, xj) =≡, if xi and xj are structurally equivalent;

(b) op(xi, xj) =v, if xi or xj is structurally more general;

(c) op(xi, xj) = ⊥, if xi and xj are structurally disjoints.

Example 5. In Figure 3: tag(constituent, ingredient) = (constituent, ingredient,
0.78,≡).

Theorem 1. Considering a set S of element names, the relation “highly similar”
noted ' is an equivalence relation on S.

Proof. Let xi, xj, xk be three elements of the set S; ci, cj, ck their respective concepts
in a given taxonomy on the domain of application. Let θ, ϑ be two given thresholds.
In the following proof, we are going to demonstrate the theorem using the first
condition of highly similarity between elements that is sim(xi, xj) ≥ θ. As for the
second condition: the percentage of the set couples {(xik, xjl) | sim(xik, xjl) ≥ θ} is
greater than ϑ; it can be deduced from the first condition when it is fulfilled for the
set of child nodes elements.

1. Reflexivity: xi ' xi because IC(ci) ≡1 IC(ci); it follows that sim(xi, xi) = 1 ≥ θ
for any θ ∈ [0, 1], thus ' is reflexive.

2. Symmetry: We assume xi ' xj i.e. sim(xi, xj) ≥ θ. Let sim(xi, xj) = δ ≥ θ,
then IC(ci) ≡δ IC(cj) i.e. IC(cj) ≡δ IC(ci) thus sim(xj, xi) = δ ≥ θ; and ' is
symmetric.

3. Transitivity: We assume xi ' xj and xj ' xk i.e. sim(xi, xj) ≥ θ and sim(xj, xk)
≥ θ. Let sim(xi, xj) = δ1 and sim(xj, xk) = δ2 then IC(ci) ≡δ1 IC(cj) and
IC(cj) ≡δ2 IC(ck); it follows from property P that IC(ci) ≡min(δ1,δ2) IC(ck), i.e.
sim(xi, xk) = min(δ1, δ2) ≥ θ then xi ' xk and ' is transitive.

�

It follows from Theorem 1 that relation “highly similar”, loosely speaking, par-
titions a set so that every element of the set is a member of one and only one cell
of the partition. Two elements of the set are considered highly similar if and only
if they are elements of the same cell. The intersection of any two cells is empty;
the union of all the cells equals the original set. We therefore compute one-to-many
matching by constructing groups of highly similar elements as deduced in Lemma 1.

Lemma 1. Let us consider m tag matching results of highly similar elements
tag (x1, x2) tag (x2, x3) . . . tag (xm, xm+1). Then, there exists a tag matching result of
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highly similar elements tag(x1, xm+1) and we can create a group of m highly similar
elements

grp(x1, . . . , xm+1) = (x1, . . . , xm+1, sim (x1, . . . , xm+1) , op (x1, . . . , xm+1))

where:

1. sim (x1, . . . , xm+1) = 1
m

∑n
i=1 sim (xi, xi+1)

2. (a) op (x1, . . . , xm+1) =≡, if ∀ (xi, xi+1) , op (xi, xi+1) =≡
(b) op (x1, . . . , xm+1) =v, if ∃ (xi, xi+1) |op (xi, xi+1) =v.

From the group constructed, we marked some of them as structurally or seman-
tically ambiguous using the following definitions.

Definition 6. A group of highly similar elements grp(x1, . . . , xm+1) is said to be
semantically ambiguous if m + 1 ≥ n or if there exist at least 2 elements xi and xj
such that xi and xj both belong to the same source. n is the number of sources.

Example 6. In Figure 3,

tag (name, name) = (name, name, 0.93,v) ;

tag (name, communName) = (name, communName, 0.75,≡)

tag (communName, scientificName) = (communName, scientificName, 0.71,≡)

then we can create grp(name, name, scientificName, communName) where

sim (name, name, scientificName, communName) =
0.93 + 0.75 + 0.71

3
= 0.79

op (name, name, scientificName, communName) = v .

grp (name, name, scientificName, communName) is semantically ambiguous because
its cardinal is greater than 2 (number of source) and also because name,
scientificName, and communName belong to the same source schema.

Definition 7. A group of highly similar elements grp(x1, . . . , xm+1) is said to be
structurally ambiguous if there exist at least 2 tag matching results tag (xi, xj), and
tag (xk, xl) such that op(xi, xj) = op(xk, xl) =v.

Definition 8. A group of highly similar elements is ambiguous if it is semantically
or structurally ambiguous.

3.3 Building Possible Mediated Schemas

Definition 9. Considering a set of n source schemas Si,i=1...n and their respective
graph representations Gi=1...n = (Vi,Ai), i = 1 . . . n, a possible mediated schema T
computed from the set of sources Si,i=1...n is a directed graph F = (V ′,A′) where
V ′ ⊂ ∪ni=1Vi and A′ ⊂ V ′ × V ′.
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To provide the possible mediated schema, we first realize one-to-one matching
between elements nodes names of two selected sources as showed in the function com-
puteTag. The sources are selected using our predictive model called IHM (Informa-
tion Hidden Model) presented in [6] which predicts data sources where a query result
can be found based on three defined learning strategies: User Hidden Habit (UHH),
User Hidden Background (UHB) and User Hidden keywords Semantics (UHS).

We first declare two new data types TagResults as a record and Graph as an ad-
jacency list; that is an array list of adjacent elements.

01 Type TagResults

02 Begin

03 name1: string;

04 name2: string;

05 sim: real;

06 op = (equiv, moreGeneral, distinct);

07 End

01 Type Node

02 Begin

03 Var name: String; // the element node name

04 Var Node: ˆnxt;

05 end;

06 Type List ˆNode;

07 Type Graph: Array[1..nb] of List; // nb: number of nodes in a graph

The function computeTag takes two element names and their corresponding
graphs and returns the tag matching result between the two elements names. It
uses the functions sim and structSim to compute the semantic and structural simi-
larity between two elements, respectively.

Function computeTag(x, y: string; Gi, Gj : Graph;): TagResults
01 Var tag: TagResults
02 Begin
03 tag.name1← x;
04 tag.name2← y;
05 tag.sim← sim(x, y);
06 tag.op← structSim(x, y);
07 return tag;
08 End

From the tag matching results, we select the highly similar element and we con-
struct groups of highly similar elements as presented in the procedure computeGroup
where the procedure insertTag adds a tag in a list; the procedure deleteTag deletes
a tag from a list and the function compareTag compares two tags and returns true
if the two tags are equivalent.
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Procedure computeGroup(H: List)
01 Var
02 tag1, tag2: TagResults;
03 Grpi: List;
04 Begin
05 i←1;
06 Repeat
07 tag1 ← H.head;
08 Grpi ← H.head;
09 deleteTag(tag1, H);
10 tag2 ←H.head;
11 For i=1 to |H| do
12 If compareTag(tag1, tag2)==true then
13 insertTag(tag2, Grpi,);
14 deleteTag(tag2,H);
15 endIf
16 endFor
17 i← i+1;
18 until |H|==0;
19 End

We further select a representative element from each group constructed using the
function representElt. We then test the semantic and structural ambiguity of the dif-
ferent groups computed using the Boolean functions semAmbiguous and strAmbigu-
ous, respectively. Therefore, from the semantically ambiguous groups of elements,
we compute distinct subgroups using the function computeDistinctGroup; and we
compute distinct nodes from the structurally ambiguous groups of elements using
the function computeDistinctNode. The nodes computed are finally used to update
the graph constructed using non-ambiguous groups of elements, as detailed in the
procedure constructGraph. The graphs and nodes are constructed using the func-
tions insertElt and insertNode which take an element and a node to be inserted and
a graph as input, respectively and return the latter graph updated with the element
or the node.

Procedure constructGraph(Grpi: List;)

01 Var :
02 Fl, Flj , Flk: Graph;
03 Gik: Node;
04 xi, xij : String;
05 Begin
06 l← 1;
07 If semAmbiguous(Grpi)==false and strAmbiguous(Grpi)==false then
08 xi ← representElt(Grpi);
09 Fl ← insertElt(xi, Fl);
10 l← l+1;
11 Else If semAmbiguous(Grpi)==true then



Reliable Mediated Schemas and Mappings in DSSP 187

12 Grpij ← computeDistinctGroup(Grpi);
13 For each Grpij do
14 lj ← l;
15 xij ← representElt(Grpij);
16 Flj ← insertElt(xij , Fl);
17 endFor
18 Else If strAmbiguous(Grpi)==true then
19 Gik ← computeDistinctNode(Grpi);
20 For each Gik do
21 lk ← lj + 1;
22 Flk ← select(Flj);
23 Flk ← insertNode (Gik, Flk);
24 endFor
25 endIf
26 End

We further select a third source and update the groups of highly similar elements
by realizing one-to-one matching between elements of the new selected source and
the representative elements from the group previously constructed. We repeat these
steps until all the sources have been matched. Therefore, once a new source gets
connected to the DSSP, the groups of highly similar elements are updated and new
possible mediated schemas can be extracted. In order to deduce possible mediated
schemas, we finally merge the graph constructed with the existing source schema.
All the functions, data types and steps thereby described are used in Algorithm 1
to produce the possible mediated schemas.

Algorithm 1: Matching Algorithm
01 Input: Graph Representation of Source Schema G1, G2, . . . , Gn
02 Output: Set of Graph Representation of possible mediated schema F1, F2, . . . , Fm
03 Var
04 Gi, Gj , Gk: Graph;
05 xi, xj , xk: string;
06 i,j,k,l,n,m: integer;
07 H, Grpi: List;
08 θ: real;
09 tag, tag1, tag2:TagResult;
10 Begin
11 Gi ← selectGraph();
12 Gj ← selectGraph();
13 n← 2;
14 For i=1 to |Gi| do
15 For j=1 to|Gj|do
16 tag ← computeTag(xi, xj , Gi, Gj);
17 if (tag.op 6= distinct) and sim(xi, xj) ≥ θ then insertTag(tag, H);
18 endFor
19 endFor
20 computeGroup(H);
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21 While Gk ← newSource() do
22 n← n+1;
23 i← 1;
24 Repeat
25 xi ←representElt(Grpi);
26 For k=1 to |Gk| do
27 tag ← computeTag(xi, xk);
28 if (tag.op 6= distinct) and (sim(xi, xk) ≥ θ)
29 then insertElt(xk, Grpi);
30 endFor
31 i← i+1;
32 until i==m;
33 endWhile
34 For each Grpi do constructGraph(Grpi);
35 m← 1;
36 For each Flk do
37 Fm ← mergeGraph(Flk);
38 m← m+1;
39 Return Fm;
40 endFor
41 End.

The mediated schema constructed can be managed as if it is a single mediated
schema based system. In other words, a possible mediated schema is constructed to
behave as a whole mediated schema in itself. Therefore, when a source is selected to
be queried, the system also selects one single mediated schema among the possible
mediated schema and manages it as if it is a single mediated schema based system.
Thus, to select a mediated schema related to the selected source, we propose to
assign reliability degree to a given mediated schema with respect to the selected
source. Thereby, instead of finding whether a mediated schema is consistent with
a source, we compute its reliability degree (or degree of consistency) with respect to
the source.

3.4 Reliable Mediated Schema (rMed)

Considering an instance T of the set of possible mediated schemas and a given source
schema Si, our aim is to find out if T is reliable with Si and assign to T a reliability
degree with respect to Si.

3.4.1 Definitions

Definition 10. A reliable mediated schema is a couple (T , dT /S) where T is a pos-
sible mediated schema and dT /S is the reliability degree of T with respect to S.

To compute reliability degree of T with respect to Si, we first check if, in a struc-
tural point of view, T is reliable to Si and we call it the structural reliability degree.
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T is said to be structurally reliable with Si if the root node of T is structurally more
general or equivalent to the root node of Si and if the structural reliability degree
of T with respect to Si is greater than a certain threshold α.

The structural reliability degree is computed as the ratio between the numbers
of sub-node of T that are structurally equivalent to a sub-node of Si and the number
of sub-node of Si. The structural reliability degree of T with respect to Si noted
dStructT /Si , is then written as follows:

dStructT /Si =
|T ∩ Si|
|Si|

. (1)

We compute the degree of reliability of T with respect to Si noted dT /Si using the
following Equation (2):

dT /Si =

∑
e∈T ∩Si d (e) p (e)∑
e∈Si d (e) p (e)

(2)

where d (e) is the similarity value between elements of the group to which e belongs;
and p (e) is the probability of encountering an instance of the element e in a mediated
schema. p (e) is then the ratio between the number of mediated schemas containing
e divided by the total number of mediated schemas.

Therefore, T is said to be reliable with Si if:

1. from Equation (1), dStructT /Si ≥ α

2. from Equation (2), dT /Si ≥ β.

Finally, the degree of reliability of a given mediated schema T with respect to
the set of data sources S1,S2, . . . ,Sn will be the average of degrees of reliability of T
with respect to each of the sources S1,S2, . . . ,Sn and we write:

dT /S1,S2,...,Sn =

∑n
i=1 dT /Si
n

. (3)

Thereby defined, considering a given source Si and 2 mediated schemas Tj and Tk
such that Tj = Tk; then Tj∩Si = Tk∩Si, i.e. dTj/Si = dTk/Si . Besides,

∑
ei∈Si d (e) p (e)

≥ θ 6= 0 because d(e) is a function of sim(ei, ej) 6= 0 and p(ei) 6= 0 since only the
highly similar elements are considered when constructing the mediated schemas and
reliability degrees are computed when the structural reliability degree is greater
than a certain threshold. Therefore, reliability degree function thus defined is well
defined.

3.4.2 Example of Reliable Mediated Schemas

Let us consider 4 source schemas S1,S2,S3,S4, and 3 possible mediated schemas M1,
M2, M3 in the field of African Traditional Medicine (ATM) as presented in Figure 4.
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Fig. 4. Example of source schemas and possible mediated schemas

Considering the semantic similarity between highly similar elements of the 4
source schemas S1,S2,S3,S4:

Sim(Ingredient, Ingredient) = 0.91

Sim(Quantity,Quantity) = 0.93

Sim(Name, ScientificName) = 0.71

Sim(Name,CommonName) = 0.75

Sim(Name,VernacularName) = 0.72.

In Table 1 we present the possible mediated schemas and their corresponding re-
liability degrees with respect to the source schemas: (dMj/Si) and with respect
to the whole set of data source schemas (dMj/S1...S4). For example, using Equa-
tion (2):

dM2/S2 =

d(ingredient)p(Ingredient)+d(Quantity)p(Quantity)

d(Ingredient)p(Ingredient)+d(Quantity)p(Quantity)+d(ScientificName)p(ScientificName)

For example, we compute p(ScientificName) and d(ScientificName) as follows:

p(ScientificName) =
number of mediated schema containing ScientificName

Total Number of Mediated Schema
=

1

3

d(ScientificName) =

sim(Name, ScientificName) + sim(Name,CommunName) + sim(Name,VernacularName)

3

=
0.71 + 0.75 + 0.72

3
= 0.72.
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Then, we have:

dM2/S2 =
0.913

3
+ 0.933

3

0.913
3

+ 0.933
3

+ 0.721
3

= 0.88.

dMj/S1
dMj/S2

dMj/S3 dMj/S4 dMj/S1...S4
M1 0.99 0.88 0.99 0.88 0.93

M2 0.99 0.99 0.88 0.88 0.93

M3 0.99 0.88 0.88 0.99 0.93

Table 1. Example of reliable mediated schema

Now, let us reconsider the 4 source schemas S1,S2,S3,S4 showed on Figure 4
and the 2 mutually disjoint possible mediated schemas M4, M5 showed on Figure 5.
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Fig. 5. Example 2: mutually disjoint possible mediated schemas

Table 2 presents the mutually disjoint possible mediated schemas M4, M5 and
their corresponding reliability degrees with respect to the source schemas: (dMj/Si)
and with respect to the whole set of data source schemas (dMj/S1...S4).

dMj/S1
dMj/S2

dMj/S3 dMj/S4 dMj/S1...S4
M4 0.717 0.717 0.717 0.717 0.717

M5 0.282 0.282 0.282 0.282 0.282

Table 2. Example of mutually disjoint reliable mediated schemas

From these examples of possible mediated schemas we can observe that the
reliability degree function behaves according to the set of possible mediated schema;
and we can deduce the theorems presented in the following subsection.

3.4.3 Theorems

Theorem 2. Given a non-empty source S and m pairwise mutually disjoint me-
diated schemas Tj,j=1...m such that S is a subset of T1 ∪ T2 ∪ · · · ∪ Tm; we have∑m

j=1 dTj/S = 1.
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Proof.

m∑
j=1

dTj/S = dT1/S + dT2/S + · · ·+ dTm/S

=

∑
e∈T1∩S d (e) p (e) + · · ·+

∑
e∈Tm∩S d (e) p (e)∑

e∈S d (e) p (e)
.

The mediated schemas are pairwise mutually disjoint, this means that for i 6= j,
Ti ∩ Tj = ∅. It follows then that:∑

e∈T1∩S

d (e) p (e) + · · ·+
∑

e∈Tm∩S

d (e) p (e) =
∑

e∈(T1∩S)∪···∪(Tm∩S)

d (e) p (e)

=
∑

e∈S∩(T1∪···∪Tm)

d (e) p (e)

=
∑
e∈S

d (e) p (e).

Therefore,
∑m

j=1 dTj/S = 1. �

Theorem 3. Given n nonempty sources Si,i=1...n and m pairwise mutually disjoint
mediated schemas Tj,j=1...m such that each Si is a subset of T1 ∪ T2 ∪ · · · ∪ Tm; we
have

∑m
j=1 dTj/S1,S2,...,Sn = 1.

The proof of Theorem 3 is immediate from Equation (3) and Theorem 2.
From Theorems 2 and 3, we can observe that the reliability degree function be-

haves according to the set of possible mediated schema. In other words, all depends
on how the possible mediated schemas were constructed. If the mediated schemas
were constructed to be pairwise mutually disjoint, the behavior of reliability degree
function seems similar to the behavior of an unconditional probability distribution
which depends on the number of possible mediated schemas. If the set of possible
mediated schema is too large, as it usually occurs in DSSP, the reliability degree of
some mediated schemas might be too low and the task of choosing a threshold might
lead to information loss. It is then desirable to enhance the task of choosing thresh-
olds. Therefore, constructing not mutually distinct possible mediated schemas could
improve the value of reliability degrees. In this latter case, the reliability degrees
seems to behave as a conditional probability distribution in which the probability
of the intersections is contained in the value of the reliability degree.

We can finally address the next step of our method which is assigning reliability
degrees to the possible mediated schemas with respect to the source schemas. In
Algorithm 2 we present how reliability degrees are assigned to the possible mediated
schema.

Algorithm 2: Reliable Mediated Schema

01 Input: Possible mediated schema T1, T2 . . . , Tm,
02 A Source Schema Si
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03 Output: Reliable Mediated Schema (Tj , dTj/Si)
04 Var α, β : real;
05 Begin
06 For j=1 to m do
07 If (dStructTj/Si ≥ α) then

08 Compute dTj/Si ;
09 if dTj/Si ≥ β then Return (Tj , dTj/Si);
10 EndIf
11 Endfor
12 End

After computing reliable mediated schema our goal is to extract reliable semantic
mappings (rMap) between a source schema and a target reliable mediated schema.
Therefore, in the same way of thinking as presented previously, we first compute the
tag matching between couple of elements names and we store in a group only the
couples which are highly similar. From this group, we construct subgroups of highly
similar elements and we mark the groups which are semantically ambiguous. Finally,
from the non ambiguous group of elements, we return the mapping results, and from
couple of ambiguous elements, we compute sets of possible mappings. Finally, we
assign reliability degrees to the possible sets of mappings. We therefore formally
define a reliable mapping as a couple (M, d(M)) where M is a set of distinct
tag matching results between element names of the source schema and a target
reliable mediated schema and d(M) is the reliability degree of M with respect to
the concerned source schema.

4 EXPERIMENTS

The algorithms presented above have been implemented and evaluated through
a number of experiments. In this section we present the results obtained during
these experiments. We especially check the feasibility, the efficiency, the accuracy
and the performance of our system.

4.1 Experimental Setup

We build a reliable data integration system called KSpace based on the methods
and algorithms presented in the previous sections. KSpace takes as input a set of
data sources, internally represented as graph, and it automatically generates a set of
possible mediated schemas. Kspace then assigns reliability to each mediated schema
with respect to each of the sources and then deduces the reliability degrees of each
mediated schema with respect to the set of data sources.

We used XML enabled Oracle database to store our data and we implement our
methods, algorithms in C++. We used WordNet database [12] to compute Lin [14]
similarity value between elements names. We conducted our experiments on a mixed
network with three computers, one on Windows 7, another one on Linux-Fedora 10
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and the last one on Ubuntu Desktop 9. Each computer used 2 CPUs Intel Pentium
M 3 GHz with 1 Gb memory. For our experiments, we set the pairwise similarity
threshold for creating the mediated schema to 0.70, and the structural threshold for
creating mediated schema to 0.80.

We evaluate our system using standard metrics, Precision Recall and F-measu-
re [23]. Considering a non-empty mapping T provided by a mapping tool and Tex
a non-empty mapping provided by a domain expert matcher:

Precision: expresses the proportion of correct mappings among the mappings pro-
duced by a mapping tool.

Precision =
| T ∩ Tex |
| T |

.

Recall: shows the proportion of correct mappings extracted by the system, as a frac-
tion of the expert.

Recall =
| T ∩ Tex |
| Tex |

.

F-measure: is a compromise between recall and precision.

F-measure =
2 · precision · recall

precision + recall
.

4.2 Experimental Results

We first evaluate the feasibility of our system using real world data sources in African
Traditional Medicine (ATM) domain on 3 scenarios plants, diseases and treatments.
The sources were selected from different projects [7, 25, 24, 26] on ATM from diverse
African countries. Each sub-domain, plant, disease or treatment contains hundreds
of documents translated into French. We compute the average obtained with each
mediated schema (rMed) and reliable semantic mappings (rMap) on precision, recall
and F-measure as showed in Figure 6.

After that, we evaluate the efficiency of our system by observing the response
time of our system on the number of input sources as showed in Figure 7.

Then, we evaluate the accuracy of our system by comparing the accuracy of
the mediated schema generated with the mediated schema generated using semi-
automatic system. We therefore used XBenchMatch [5], a benchmark for XML
schema matching tool, to compare the accuracy of reliable mediated schemas and
then compared our system (KSpace) to COMA, Similarity Flooding and PORSCHE
on precision, recall and F-measure for 3 scenarios: person, university and biology
(Figure 8).

We finally evaluate the performance of our system by comparing the response
time between KSpace and P-mapping system (referred to here as UDI) as shown in
Figure 9.
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Fig. 6. Precion-Recall-F-measure of KSpace on 3 scenarios (Plant, Disease, and Treat-
ment): The standard metrics precision, recall and F-measure of rMed and rMap vary
above 0.8
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Fig. 7. KSpace response time on the number of input schema (Scenario Plant): The re-
sponse time is a linear function on the number of input sources
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  Fig. 8. Precion-Recall-F-measure of KSpace compared with COMA, Similarity Flooding,
PORSCHE on 3 scenarios Person, University and Biology
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Fig. 9. KSpace(rMedMap) compared with UDI(pmapping)
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As we can deduce from Figure 8, although our system is a self-sustained based
system, it produces reliable mediated schemas which seem as accurate as the single
mediated schema produced by semi-automatic systems. As for the response time,
Figure 9 shows that KSapce is faster than UDI for less than 150 input schemas and
above 150 input schemas, KSpace evolves sometimes a second more than UDI.

5 RELATED WORK

In this section we present some existing methods which also perform matching and
mapping between source schemas in order to generate mediated schemas and se-
mantic mappings. We argue about the necessity to propose new solutions for data
integration in Dataspace Support Platforms which are self-sustained based sys-
tems. The reader can refer to [17] for a survey on schema matching approaches
or to [3, 16, 20, 15, 13, 4, 9, 2, 8] for recent methods on schema mappings.

PORSCHE [20] provides single mediated schema from a set of multiple tree-
based input schemas. Their method utilizes a holistic approach which first clusters
the nodes based on linguistic label similarity. Similarity Flooding [16] proposes
a matching algorithm based on a fixpoint computation that is usable across different
scenarios. It takes two graphs schemas as input, and produces as output a mapping
between corresponding nodes of the schemas. After their algorithm runs, they expect
a human to check and if necessary adjust the results. Unfortunately, in the possible
application domain of dataspace, the user might not be skilled enough to manipulate
mappers or to provide accurate mappings.

COMA [3] provides semantic mappings between two input schemas by combin-
ing multiple matchers presented in the survey [17] and represents a generic match
system supporting different applications and multiple schema types such as XML
and relational schemas. In the same path, He and Chang [13] assume that the source
schemas are created by a generative model applied to some mediated schema. Our
approach does not depend on a specific matchers or a particular schema-matching
technique, when these approaches are generic models and thus must rely on statis-
tical properties of source schemas.

In [15] the authors proposed a method generating a set of alternative mediated
schemas based on probabilistic relationships between existing integrated relations.
In a DSSP, sources might not be fully integrated before use. Then we can not
focus on the properties generally obtained when we fully integrated source schemas.
That is the reason why we focus on the matching between element nodes names
to lead the system self-extracts useful relationships between its participants. Our
system also reuses the self-extracted relationship and therefore improves the type
of relationships as a new source gets connected in a pay-as-you-go [11] fashion.
All the contradictions presented above arise especially because a DSSP is a self-
sustained based system and it has special properties different from those of existing
data integration systems. Therefore, new solutions are needed in the case of data
integration in DSSP.
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Dong et al. [9] proposed the concept of probabilistic schema mapping for data
integration with uncertainty in DSSP, but they did not describe how to create such
mappings. Sarma et al. further introduced p-mapping [2], a probabilistic-based
method to manage uncertainty between the semantic mappings automatically gene-
rated between a source schema and a target mediated schema. Assigning of prob-
abilities is obtained by computing the ratio between the number of source a given
mediated schemas is consistent with and the total number of source. Then to com-
pute the numerator of this fraction, the system should determine whether a given
mediated schema is consistent with a source. Hence, the consistency measurement
of a given mediated schema or semantic mapping with respect to a source is a value
in the set {0, 1}. Therefore, the mapping or mediated schema with the highest
probability will be the one which is consistent with the highest amount of sources;
but, a given mediated schema could be consistent with a low number of sources,
therefore its probability will be too low and a system constructed on such type of
measure might not consider the information available in those sources; this might
lead to information loss. We then propose to fuzzify the consistency measurement
by computing the “degree of consistency” or “reliability degree” which belongs to the
interval [0,1] instead of belonging to the set {0, 1}. This will then lead the system
to consider as much as possible the information available in the source in order to
produce “best endeavor results”. We think using such a technique will lead to a bet-
ter management of uncertainty among the mediated schema or semantic mappings
self-provided.

6 CONCLUSION AND FUTURE WORKS

In this paper we present the Reliable Matching and Mapping method (rMedMap)
which automatically provides reliable mediated schemas (rMed) and reliable map-
pings (rMap) from a set of independently constructed source schemas in DataSpace
Support Platforms which is a self-sustained system. Our aim was to increase the
system’s endeavor results by leading it to considering as much as possible informa-
tion contained in any source connected. We then present algorithms which auto-
matically provide set of possible mediated schema. We further show how to com-
pute reliability degrees and assign to the possible mediated schema with respect to
each source schema and to the whole set of data source schemas connected to the
DSSP. Compared to existing systems, experimental results show that our system is
faster and, although completely automatic, it produces reliable mediated schemas
which are as accurate as those produced by semi-automatic systems. Moreover,
with less than a hundred and fifty input schemas, the response time of our system
is less than the response time of the unique existing system which can also pro-
duce multiple probabilistic mediated schemas for data integration in DSSP. Finally,
our aim seems to be achieved because we led the system considered as much as
possible information contained in the source in order to produce its best endeavor
results.
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As for the future work, we discover that providing reliability degrees to manage
uncertainty between mediated schemas and semantic mappings in Dataspace sys-
tems is necessary but not sufficient; because there exists another level of uncertainty
between reliable mappings which has to be handled. In other words, in some cases
the quality of a reliability degree or probability distribution might depend on the
number of possible mappings. That is, if the set of possible mappings is too large,
the reliability degrees or the probability distribution will be too low. We are then
planning to use possibility theory to manage such uncertainty between the reliable
mappings.
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