Computing and Informatics, Vol. 31, 2012, 1401-1416

DEPTH-FIRST EVENT ORDERING IN BDD-BASED
FAULT TREE ANALYSIS

Yuchang Mo, Farong ZHONG, Huawen Liu

Department of Computer Science
Zhejiang Normal University
Jinhua 321004, China

e-mail: myc@zjnu.cn

Quansheng YANG

School of Computer Science and Engineering
Southeast University

Nanging 210089, China

e-mail: yagngs@seu.edu.cn

Gang Cul

School of Computer Science and Technology
Harbin institute of technology

Harbin 150001, China

e-mail: cg@hit.edu.cn

Communicated by Vladimir Kvasni¢ka

Abstract. In BDD-based fault tree analysis, the size of BDD encoding fault trees
heavily depends on the chosen ordering. From a theoretical point of view, finding
the best ordering is an intractable task. So, heuristics are used to get good order-
ings. The most simple, and often one of the best heuristics is depth first left most
(DFLM) heuristic. Although having been used widely, the performance of DFLM
heuristic is still only vaguely understood, and not much formal work has been done.
This paper starts from two different research objects: fault tree without repeated
events (NRFT) and fault tree with repeated events (RFT). For NRFT, the BDD

1402 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

generated according to DFLM ordering is proved to be the smallest BDD with the
size equal to the total number of events. For RFT, a randomized algorithm is firstly
proposed to create reliable benchmarks including large number of random fault trees
with different specificities. Then, these benchmarks are used to perform two types
of experiments to study the performance of DFLM heuristic. For RFT with small
number of repeated events, it is found that the sizes of the BDD built over DFLM
orderings are only slightly larger than the sizes of the RFT with different specifici-
ties. However, with the increase of the number of repeated events, we encounter
the size explosion problem, and the change of repeated event distribution patterns
will have a significant impact on the sizes of the BDD built over DFLM orderings.
We also find that the number of repeated events is the more important measure
than some other specificities (shape, logical type of top gate and OR/AND gate
distribution) to estimate the level of the difficulty in BDD-based fault tree analysis.

Keywords: Fault tree analysis; benchmark; event ordering; binary decision dia-
gram.

Mathematics Subject Classification 2010: 68M15

1 INTRODUCTION

Fault tree analysis (FTA) is an important technique for reliability and safety analy-
sis. Bell telephone laboratories developed the concept in 1962 for the U.S. Air Force.
It was later adopted and extensively applied by the Boeing Company. FTA is now
widely used in the electronics, nuclear and aerospace industries.

Binary decision diagrams (BDD) are the state-of-the-art data structure to han-
dle Boolean functions. Since their introduction in the reliability field they have
proved to be in many cases a very powerful tool [1]. They made possible the as-
sessment of complex fault-trees both qualitatively (computation of minimal cutsets)
and quantitatively (exact calculation of the top event). Tools such as Aralia can in
many cases give more accurate results than conventional tools, while running 1 000
times faster [2].

In BDD-based fault tree analysis, a fault tree can be encoded by a BDD. This
encoding requires to select a total order over the events. For a given ordering,
the representation is unique, up to an isomorphism. The smaller the BDD, the
more efficient subsequent operations using it (probability assessment, computation
of minimal cutsets) are likely to be. So it is of a great interest to get BDD as small
as possible.

The size of BDD encoding fault trees heavily depends on the chosen ordering.
Actually, there is often a variation of several orders of magnitude between the sizes
of two BDD built over different orderings. From a theoretical point of view, finding
the best ordering is an intractable task [3]. So, heuristics are used to get good
orderings [4, 5].

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1403

Many ordering heuristics have been proposed in the literature. The most simple,
and often one of the best heuristics, consist in numbering basic events by means of
a depth first left most (DFLM for short) traversal of the tree [6]. DFLM heuris-
tic is “good” because it preserves, at least to a certain extent, the locality of the
events. For instance, it numbers basic of events of modules consecutively. Based on
DFLM heuristic, different variants have been proposed, such as those consisting in
a rearrangement of fanions of gates according to the values of their weights [4], or
those consisting in a rearrangement of fanions of events according to the numbers
of repetitions [5].

Although having been used widely, the performance of DFLM heuristic is still
only vaguely understood, and not much formal work has been done. The research
question in this paper is: what’s the relation between DFLM’s performance and
different specificities in the trees (such as the number of repeated events and their
distribution patterns, tree shape and size, logical type of top gate and OR/AND
gate distribution. ...)?

We start from two different research objects: fault tree without repeated events
(NRFT) and fault tree with repeated events (RFT). For NRFT, the BDD generated
according to DFLM ordering is proved to be the smallest BDD with the size equal
to the total number of events. For RF'T, a randomized algorithm is firstly proposed
to create reliable benchmarks including large number of random fault trees with
different specificities. Then, these benchmarks are used to perform two types of
experiments to study the performance of DFLM heuristic. We provide experimental
results we got, and give some interesting findings for our research questions.

2 SMALLEST BDD GENERATION FOR NRFT

For NRFT, the BDD generated according to DFLM ordering is proved to be the
smallest BDD.

Theorem 1. For NRFT, DFLM ordering is optimal and the time complexity of the
smallest BDD generation is O(n).

Proof. The following notations are used:

e X the set including all events contained by a tree
e n the number of events included by a tree, i.e., n = | X|

e f the Boolean function equivalent to a tree.

Firstly, we try to prove that the size of the smallest BDD encoding a NRFT is
not less than n.

For the sake of contradiction, suppose that the smallest BDD encoding a NRFT
is less than n, and event z; € X does not appear in this BDD. Thus, for any
assignment o of X — {z;}, i.e., a mapping from X — {z;} into {0, 1}, the following
formula (1) holds:

fﬂciil(a) = fwiio(a) =1V fxiil(a) = fxi:()(o') =0. (1)

1404 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

However, a special assignment ¢* can be established as follows:
1. If z; is connected to an OR gate, for any sibling subtree (connected to the same
gate with z;) ¢; and any event zj included by ¢;, o*(xy) = 0;

2. If z; is connected to an AND gate, for any sibling subtree (connected to the
same gate with z;) ¢; and any event xy included by ¢;, o*(zx) = 1;

3. Simplify the tree using following rules (2), and goto 1. until there is only one
event xz; left.

fVvli=1fVvo=ffAl=ffA0=0 (2)

é@@ R
® O O O[O (0 O
® ©®

a) b)
Fig. 1. An illustration of the special assignment ¢*

As an illustration, for the NRFT shown in Figure 1a), suppose that event x3
is not included by the smallest BDD. The derivation of the corresponding special
assignment o* of the events {x1, x9, x4, x5, 6, x7} is shown in Figure 1 b) and Table 1.

T X1 | T2 | X4 | T | T | XT7
a*(x) 1 1 0 1 1 1

Table 1. An illustration of the special assignment o*

It is obvious that for this assignment ¢* the following formula holds:

Joi=1(0") = 1A fo,=0(0") =0 (3)

Therefore, there will not be an equivalent BDD with a size less than n.

Secondly, we try to prove that the size of the equivalent BDD generated using
DFLM ordering is equal to n.

According to DFLM ordering, the BDD can be generated in a bottom-up man-
ner. During the generation process, we can find that:

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1405

e For each bottom gate (all its fanions are events), the size of the BDD encoding
this gate is the number of the fanins (events).

e For each intermediate gate (at least one of its fanions is gate), the size of the
BDD encoding this gate is the sum of the sizes of all the BDD encoding its
sub-trees.

As an illustration, for the NRFT shown in Figure 1a), Table 2 gives the results
in the bottom-up generation process.

Gate | DFLM ordering BDD size

G4 r5 < Tg 2

G3 T < T < X7 241=3

G2 T3 < T4 2

G1 rI<re<rzg<ry<az<axg<axr|24+3+2=7

Table 2. BDD generation in a bottom-up manner for NRFT in Figure 1a)

Thus, the size of the equivalent BDD according to DFLM ordering is n, and the
BDD generation takes linear time.
Finally, as a synthesis of the above results, Theorem 1 can be derived. |

3 RFT BENCHMARK
3.1 Requirements

A benchmark is a set of fault trees used to collect experimental data during the
performance evaluation process. For example:

1. A benchmark including 13 real life coherent fault trees is used to compare 6
interesting heuristics using Aralia [4].

2. A benchmark including 255 fault trees is used to develop a NN (Neural net-
works)-based heuristic selection method for the fault tree to BDD conversion
process [5].

3. A benchmark including 44 fault trees is used to develop a new ordering metho-
dology which seeks to select events during the conversion process from a fault
tree, allowing different potential ordering permutations on each path of the dia-
gram [7].

4. A self-developed benchmark is used to show that the proposed BDD-based al-
gorithm is more efficient than traditional SDP (sum of disjoint products)-based
algorithm for reliability analysis of phased-mission systems [8].

However, in the real sense very few benchmarks proposed in the literature are reliable
ones due to the reasons outlined as follows.

1406 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

Requirement 1. For a reliable benchmark, it should include a large number of
trees with different structural characteristics, such as tree shape and size, logical
type of top gate and OR/AND gate distribution.

The benchmark used in [4] is made of fault trees from different origins; but there
is not much description of their structural characteristics and the total number of
selected fault trees is only 13.

The benchmark used in [8] has:

1. 7 groups of components;

2. each group has n components;
3. 5 system configurations;
4.

4 mission configurations.

For this benchmark the number of component groups is unchangeable, the number
of phases or phase configuration or mission configuration has a limited degree of
freedom, and only the component number included by a group can be selected
randomly. Due to the small sample size problem, the conclusions or results might
become ungeneralizable to fault trees with different characteristics, as shown in [9].

Requirement 2. In a reliable benchmark, the selected fault trees should have dif-
ferent repeated events characteristics, such as the number of repeated events and
their distribution patterns.

Given the fact that the repeated events have a great impact on the performance
of different FTA techniques, the design and application of a benchmark should pay
more attention to repeated events. The benchmarks in the literature have very little
description of the diversity of their repeated event distribution patterns [4, 5, 6, 7, 8],
or have only small number of repeated events [5, 7] (not larger than 20 repeated
events). Thus, the analysts and researchers might feel confused when they try to
apply the conclusions in real-world practices or do further research to improve the
results [10, 11].

In this paper, we prepare to use a randomized algorithm to create a benchmark
consisting of large number of random fault trees with different specificities, and
what’s more important this kind of diversity is controllable by several identified
parameters to help us take on fine-grained performance analysis.

3.2 Design

A randomized FTG algorithm is described here to create a reliable benchmark.
The main points are to randomly generate fault tree skeletons based on the given
parameters, and then add repeated events to the skeletons randomly.

The FTG algorithm as shown in Table 3 generates a fault tree in a top-down
manner under the control of five parameters: pg;, a;, b;, toplogic, and pre.

The key points of FTG are discussed as follows:

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1407

Key point #1: Determine a gate’s logic
A simplified fault tree has an alternating sequence of AND and OR gates. Thus,
a gate’s logic property is closely related to the top gate’s logic (denoted with
logic parameter toplogic) and its layer’s index.
If toplogic is OR, gates in “odd” layers are all OR gates, and gates in “even”
layers are all AND gates. If toplogic is AND, gates in “odd” layers are all AND
gates, and gates in “even” layers are all OR gates.

Key point #2: Determine a gate’s fanions number

The fanions numbers of the gates staying in #¢ layer follow a uniform distribution
on the interval [a;, b;], 1 < i < the total number of layers.

Key point #3: Determine a node type

Denote the percentage of gates in the set of all nodes in #i layer with pg;
(0 < pg; <1). A node type can be decided as follows:

1. Generate a random number x from the uniform distribution on the interval
[0, 1;
2. If x < pg;, then the node type is gate; else the node type is event.

Denote the number of all nodes in #7 layer with n;. We can derive the following
equation easily:
Nir1 = Ny X pg; X (ai + bl)/Q (4)

Thus, to make all layers to have similar sizes,
pgi X (a; +b;)/2 ~ 1. (5)

If pgi x (a;+b;) /2 > 1 holds, n; increases as i increases; and if pg; X (a;+b;)/2 < 1

holds, n; decreases as i increases.

Normally, a fault tree has much more gates than events in its top part in order

to include enough events, ie., 1 > pg; > 2/(a; + b;) holds in the top part.

Whereas it has much more events than gates in the bottom part in order to

have a wind-up process, i.e., 2/(a; + b;) > pg; > 0 holds in the bottom part.
Key point #4: Add repeated events to the fault tree skeleton

Different events have different Id values. Denote the percentage of repeated
events in the set of all events with pre. An event type, repeated or not, can be
decided as follows:

1. Generate a random number 2 from the uniform distribution on the interval
[0, 1;
2. If x < pre then the event is repeated one; else it is not a repeated event.

Figure 2 is a fault tree example generated by the FTG algorithm. Note that
repeated events are labeled with x.

1408 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

FTG(toplogic, pg;, a;, b, pre) =
Generate root gate root, determine its fanins number and logic,
Push (root),
If stack is empty; Return root.
Pop (g),
Determine g’s fanins number and logic,
For each g’s fanin, do
Generate node z, determine its type (gate or event),
If x is a gate; Push(z);
Goto 3
Id =1;
Calculate the total number of events TN
For each event, do
Determine its type,
If it is a repeated event; event.Id < Random(1,TN = pre)
If it is not a repeated event; event.ld < Id++;
Return root;

e e el el e
SRR B ©o oot W O

Table 3. FTG algorithm

Fig. 2. A fault tree example generated by the FTG algorithm

4 PERFORMANCE ANALYSIS WITH RFT
4.1 Type 1 Experiment (RFT with Small Number of Repeated Events)

To find the relation between DFLM’s performance and different specificities in the
trees (such as the number of repeated events and their distribution pattern, tree
shape and size, logical type of top gate and OR/AND gate distribution. ...), the
experiment protocol is described as follows:

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1409

1. Initialize the parameters;
2. Run FTG 30 times to create a benchmark including 30 random fault trees;

3. Generate an equivalent BDD using DFLM ordering for each tree in the bench-
mark, and collect the BDD size information.

4. Analyze the experimental data to get maximum, minimal, mean, deviation, and

coefficient of variation (CV) of the obtained 30 different BDD size data using
the following Equation (6).

30
Mean = (Z bddsizei> /30

i=1
30
Dev = {Z(bddsz’zei - Mean)Z] /30

i=1

cv V' Dev/Mean

Table 4 is obtained by performing the above experiment 5 times with the pa-
rameters in (7).

1 i<2 o
toplogic = AND pg; ={ 0.3 3<:<7 ai/bi—{ 2/5 ;;22 pre = 0.05 (6)
0 8<u -

Table 5 is obtained by performing the above experiment 5 times with the pa-
rameters in (8).

1 <2 o
toplogic= OR pg; =< 0.3 3<i<7 ai/bi—{ 2/6 g_<2 pre =0.05 (7)
0 8<i =1

Table 6 is obtained by performing the above experiment 5 times with the pa-
rameters in (9).

1 <2 o
toplogic = OR pg; =< 0.5 3<i<9 ai/bi—{ 3/6 g_<22 pre = 0.05 (8)
0 10 <1 -

Check the values of CV of BDD sizes in the above tables. It can be concluded
that:

Conclusion 1. For the RFT with small number of repeated events (not more than
5%), the change of their distribution patterns only causes a slight variation of the
sizes of the BDD built over DFLM orderings, i.e., no CV is larger than 0.1.

1410 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

Check the values of Mean of BDD sizes in the above tables, and compare them
with the values of the number of events. It can be concluded that:

Conclusion 2. For the RFT with small number of repeated events (not more than
5%), there is no size explosion problem, and the sizes of the BDD built over DFLM
orderings are never two times larger than the total number of events.

The above two conclusions hold for each experiment on the RFT with differ-
ent specificities, such as shape, size, logical type of top gate and OR/AND gate
distribution.

Thus, for the BDD-based analysis of RFT with small number of repeated events,
the required time and memory can be evaluated accurately, and DFLM heuristic is
enough to process very large trees with the available computational resources of
standard personal computers.

Size of No. No. No. Max of Min of Mean of CV of

No. of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes

#1 99 67 32 5 115 91 102 0.0594219
#2 156 105 51 5 188 158 171 0.0545697
#3 180 121 59 5 210 150 178 0.0868246
#4 201 135 66 5 245 181 215 0.0880845
#5 216 145 71 5 269 222 247 0.0541576

Table 4. Performance results of DFLM heuristic with parameters in (7)

Size of No. No. No. Max of Min of Mean of CV of

No. of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes

#1 144 97 47 5 169 143 154 0.040857
#2 189 127 62 5 233 174 213 0.0605949
#3 228 153 75 5 282 247 263 0.0329972
#4 240 161 79 5 296 249 269 0.0455843
#5 279 187 92 5 350 276 311 0.0592997

Table 5. Performance results of DFLM heuristic with parameters in (8)

4.2 Type 2 Experiment (RFT with Large Number of Repeated Events)

During the above experiments, we find that, for RFT with small number of repeated
events, the sizes of the BDDs built over DFLM orderings are never two times larger
than the total number of events, and the impact of changing the characteristics
(such as repeated event distribution pattern, tree shape and size, logical type of top
gate and OR/AND gate distribution) on performance is not significant.

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1411

Size of No. No. No. Max of Min of Mean of CV of
No. of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes
#1 1023 683 340 5 1307 920 1127 0.0809006

#2 1029 687 342
#3 1050 701 349
#4 1089 727 362
#5 1077 719 358

1332 1161 1251 0.0360974
1340 1126 1236 0.0480758
1420 1196 1285 0.0492721
1342 1121 1242 0.0460433

(G2 B2 B G

Table 6. Performance results of DFLM heuristic with parameters in (9)

Now, let us turn the research object to RFT with large number of repeated
events.

Table 7 is obtained by performing the experiment 5 times with the parameters
in (10).

1 <2 o
toplogic = AND pg; =4 03 3<i<5b q/b= { 2/5 ;;22 pre =02 (9)
0 6 <1 -

Table 8 is obtained by performing the experiment 5 times with the parameters
in (11).

L 152 6 1=2
toplogic = OR pg; = { 03 3<i<5 ai/biz{ 2/4 3;i pre =0.2 (10)
0 6<1 -

Table 9 is obtained by performing the experiment 5 times with the parameters
in (12).

1 <2 o
toplogic = AND pg; = 03 3<i<7 q/b= { 2/5 ;;22 pre = 0.2 (11)
0 8 <1 -

Check the values of mean of BDD sizes in the above tables. As we expect, it is
found that:

Conclusion 3. Although for the RFT with small number of repeated events there
is only a slight increase in BDD size with the increase of tree size, we encounter the
size explosion problem when both the tree size and the number of repeated events
increase.

Note that, with the increase of the total number of events from 100 to 220
and the number of repeated events from 20 to 50, the mean of the sizes of the BDD
built over DFLM orderings dramatically increase from 1 000 to 70 000. If the tree size
and the number of repeated events continue to increase, the available computational

1412

Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

resources of standard personal computers will be exhausted quickly. What’s more
important is that, in order to prove that the new proposal (such as new heuristics,
algorithms or tools) is really better than the available counterparties to cope with
the size explosion problem, fault trees included by the used benchmark should have
more events than 200 and more repeated events than 50. This requirement is often
overlooked by the related research work [4, 5, 6, 7).

Size of No. No. Interval of No. Max of Min of Mean of CV of
No. of of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes
#1 141 95 46 [19, 28] 1606 588 842 0.270096
#2 165 111 54 [25, 33] 4270 1349 2378 0.314447
#3 201 135 66 [27,37] 13517 2669 5134 0.44241
#4 207 139 68 [26, 36] 8606 1656 4940 0.324718
#5 231 155 76 [26, 35] 10196 3198 6 356 0.284917
Table 7. Performance results of DFLM heuristic with parameters in (10)
Size of No. No. Interval of No. Max of Min of Mean of CV of
No. of of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes
#1 157 105 52 [23,28] 2972 883 1790 0.285413
#2 166 112 54 [24, 32 4746 1609 3260 0.266595
#3 217 149 68 [22, 38] 17315 2077 7239 0.570824
#4 242 156 75 [23,39] 27441 2164 8854 0.594620
#5 260 173 87 [24, 35] 32219 1961 9441 0.787493
Table 8. Performance results of DFLM heuristic with parameters in (11)
Size of No. No. Interval of No. Max of Min of Mean of CV of
No. of of of of repeated BDD BDD BDD BDD
tree events gates events sizes sizes sizes sizes
#1 228 153 75 (30, 40] 38322 8693 22361 0.385287
#2 249 167 82 [38, 44] 37254 12216 22884 0.272282
#3 282 189 93 [36,49] 160388 29355 77639 0.440476
#4 300 201 99 [33,44] 159696 10816 51316 0.598973
#5 330 221 109 [37,49] 254860 16151 72923 0.680787

Table 9. Performance results of DFLM heuristic with parameters in (12)

Check the values of CV of BDD sizes in the above tables. It can be concluded

that:

Conclusion 4. For the RFT with many repeated events (about 20 percent of the
total number of events), the change of their distribution patterns will have a signif-
icant impact on the sizes of the BDD built over DFLM orderings.

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1413

Note that the CVs in this type of experiments are 10 times larger than those in
Tables 4-6, and, for the 30 different BDD size data, the maximum can frequently
be 10 times larger than the minimum.

Compare the data in Table 7 and those in Table 8, it can be concluded that:

Conclusion 5. For the RFT with many repeated events (about 20 percent of the
total number of events), the values of CVs or BDD sizes are very close for the RFT
having similar tree sizes and numbers of repeated events but different shape, logical
type of top gate and OR/AND gate distribution. That is to say, the change of
those latter tree specificities will not have a significant impact on the sizes of the
BDD built over DFLM orderings, and the number of repeated events is the more
important measure to estimate the level of the difficulty in BDD-based fault tree
analysis.

5 CONCLUSION AND FURTHER RESEARCH

In BDD-based fault tree analysis, the size of BDD encoding fault trees heavily
depends on the chosen ordering. The smaller the BDD, the more efficient subsequent
operations using it (probability assessment, computation of minimal cutsets) are
likely to be; so it is of a great interest to get BDD as small as possible. From
a theoretical point of view, finding the best ordering is an intractable task. So,
heuristics are used to get good orderings.

Many ordering heuristics have been proposed in the literature. The most simple,
and often used one of the best heuristics is DFLM heuristic. The research question
in this paper is: what is the relation between DFLM’s performance and different
specificities in the trees (such as the number of repeated events and their distribution
patterns, tree shape and size, logical type of top gate and OR/AND gate distribution.

¢

The contributions of this paper are listed as follows:

1. For NRFT, the BDD generated according to DFLM ordering is proved to be the
smallest BDD with the size equal to the total number of events.

2. For RFT with small number of repeated events, there is no size explosion prob-
lem. The sizes of the BDD built over DFLM orderings are only slightly larger
than the total number of events. The available computational resources of stan-
dard personal computers is enough to process these RFT with different speci-
ficities, such as repeated event distribution pattern, tree size and shape, logical
type of top gate and OR/AND gate distribution.

3. With the increase of the number of repeated events, we encounter the size ex-
plosion problem, and the change of repeated event distribution patterns will
have a significant impact on the sizes of the BDD built over DFLM orderings.
We also find that the number of repeated events is the more important mea-
sure than some other specificities (shape, logical type of top gate and OR/AND

1414 Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

gate distribution) to estimate the level of the difficulty in BDD-based fault tree
analysis.

The most interesting further work, in our minds, is as follows:

1.

To compare the performance of different variants proposed based on DFLM
heuristic, such as those consisting in a rearrangement of fanins of gates according
to the values of their weights, or those consisting in a rearrangement of fanions
of events according to the values of their repetitions.

To extend the performance analysis practice to multistate systems and multi-
phase systems, where fault trees have dependent events and mutually exclusive
events in addition to repeated events.

Acknowledgement

The research work of this paper was funded by the National Natural Science Foun-
dation of China (No. 60903011, 61272130, 61100119); Natural Science Founda-
tion of Zhejiang Province (No. Y1100689); Natural Science Foundation of Jiangsu
Province (No. BK2009267); Project of Science and Technology Department of Zhe-
jiang Province (No. 2010C31122); National Research Foundation for the Doctoral
Program of Higher Education of China (No. 20090092120030); the China Scholarship
Council under Grant No. 2011833135.

REFERENCES

1]
2]
8]

[4]

[5]

(6]

[7]

Rauzy, A.: New Algorithms for Fault Tree Analysis. Reliability Engineering and
System Safety, Vol. 40, 1993, pp. 203-211.

ARALIA Group: Computation of Prime Implicants of a Fault Tree within ARALIA.
In: Proc. Of the ESREL 95 Conf., Bournemouth, UK.

BorLig, B.—WEGENER, I.: Improving the Variable Ordering of OBDDs is NP-
Complete. IEEE Transactions on Computers, Vol. 45, 1996, No. 9, pp. 993-1002.
Bouissou, M.—BRUYERE, F.—Rauzy, A.: BDD-Based Fault Tree Processing:
A Comparison of Variable Ordering Heuristics. In: Proceedings of ESREL 97, 1997,
pp. 2045-2052.

BARTLETT, L. M.—ANDREWS, J. D.: Selecting an Ordering Heuristic for the Fault
Tree to Binary Decision Diagram Conversion Process Using Neural Networks. IEEE
Transactions on Reliability, Vol. 51, 2002, No. 3, pp. 344-349.

GAUTHIER, J.—LEDUC, X.—RAUZY, A.: Assessment of Large Automatically Ge-
nerated Fault Trees by Means of Binary Decision Diagrams. Journal of Risk and
Reliability, Vol. 221, 2007, No. 2, pp. 95-105.

BARTLETT, L. M.—Du, S.: New Progressive Variable Ordering for Binary Decision
Diagram Analysis of Fault Trees. Quality and Reliability Engineering International,
Vol. 21, 2005, No. 4, pp. 413-425.

Depth-First Event Ordering in Bdd-Based Fault Tree Analysis 1415

[8] ZaNG, X.—SuN, H.—TriveEDl, K.S.: A BDD-Based Algorithm for Reliability
Evaluation of Phased Mission Systems. IEEE Transactions on Reliability, Vol. 48,
1999, No. 1, pp. 50-60.

[9] Mo, Y. C.: New Insights into the BDD-Based Reliability Analysis of Phased-Mission
Systems. IEEE Transactions on Reliability, Vol. 58, 2009, No. 4, pp. 667-678.

[10] DutulT, Y.—RAUzY, A.: A Linear Time Algorithm to Find Modules of Fault Trees.
IEEE Transactions on Reliability, Vol. 45, 1996, No. 3, pp. 422-425.

[11] REAY, K. A.—ANDREWS, J.D.: A Fault Tree Analysis Strategy Using Binary De-
cision Diagrams. Reliability Engineering and System Safety, Vol. 78, 2002, No. 1,
pp. 45-56.

Yuchang Mo is an Associate Professor in the College of Math-
ematics, Physics and Information Engineering Director of the
Dependable Computing Lab and at the Zhejiang Normal Uni-
versity. He received his B.Sc., M.Sc. and Ph.D. degrees in
computer science from Harbin Institute of Technology, Harbin,
China, in 2002, 2004 and 2009, respectively. He is currently
a Visiting Scholar with the Department of Electrical and Com-
puter Engineering, University of Massachusetts (UMass), Dart-
mouth, North Dartmouth. He has published papers on IEEE
Transactions on Reliability, Reliability Engineering and System
Safety, Quality and Reliability Engineering International, and others. His research has
been supported by the National Science Foundation of China and Zhejiang Province, and
Sci & Tech Development Plan of Zhejiang Province. His research interests include de-
pendable computing and networking, fault tolerant computing, and reliability analysis of
complex systems and networks using combinatorial models.

Farong ZHONG is currently a Professor at the Department of
Computer Science in Zhejiang Normal University. He received
his B.Sc. degree in computer science from Shandong Univer-
sity in 1986, M. Sc. and Ph. D. degrees in computer science from
Shanghai Jiaotong University in 1994 and 2005 respectively. His
research interests focus on process calculus and web services.

1416

Y. Mo, F. Zhong, H. Liu, Q. Yang, G. Cui

Huawen Li1u works in Department of Computer Science at Zhe-
jiang Normal University, P.R. China, as a Lecturer. He received
his B. Sc. degree in computer science from Jiangxi Normal Uni-
versity in 1999, and M. Sc. and Ph. D. in computer science from
Jilin University, P.R. China, in 2007 and 2009, respectively.

Quansheng YANG is currently an Associate Professor with the
Department of Computer Engineering, Southeast University
(SEU), Nanjing, China and the Director of the Computer Archi-
tecture Lab in the School of Computer Science and Engineering
at SEU. He received his B. E. (1991) degree in computer science
from Huazhong Normal University, Wu Han, China and M. Sc.
(1994) degrees in computer science from Southeast University,
Nanjing, China. His research interests include computer archi-
tecture, advanced CPU architecture, embedded system and re-
configurable computing.

Gang Cul is currently a Professor at the Department of Com-
puter Science in Harbin Institute of Technology, Harbin, China.
He serves as a senier member and a committee member of Fault-
Tolerance Computing Committee under China Computer
Federation (CCF). His research interests involve computer archi-
tecture, space computing, high-dependability computing, fault-
tolerance computing, etc. He had presided over and taken part
in many significant projects assigned by the “863”, central mi-
nistries, or local government. Till now, he had acquired one
first-rate award, two second-rate awards, and three third-rate

awards from the relevant central ministries. He also wrote more than 200 papers compiled
a teaching book and obtained 60 patents for inventions.

