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Matúš Chochĺık
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Abstract. Reflection, reflection-based programming and metaprogramming are
valuable tools for many programming tasks, like the implementation of persistence
and serialization-like operations, object-relational mapping, remote method invoca-
tion, automatic generation of user-interfaces, etc., and also for the implementation of
several design patterns. C++ as one of the most prevalent programming languages
still lacks support for standardised, compiler-assisted reflection. In this paper we
introduce in short the Mirror reflection library which is a part of an ongoing effort
to add reflection to C++ and we will show how reflection can be used to greatly
simplify the implementation of object factories – classes constructing instances of
other classes from various external data representations.
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1 INTRODUCTION

Design patterns, as described in [1, 2] and elsewhere, present the established solu-
tions to commonly occuring problems in the process of designing and implementing
a software. However, one of the issues with such patterns is that their own imple-
mentation can become problematic, tedious and error-prone, especially when they
are implemented manually by a software development team.
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1.1 The Factory Pattern

In this paper we describe a way to partially automate the implementation of the
Factory design pattern in the C++ language using the Mirror C++ reflection util-
ities. Since various definitions of the factory pattern differ slightly in details, for
the purpose of this paper by factory we mean a class which can create instances of
a product type, but does not require that the caller chooses the manner of construc-
tion, nor he supplies required parameters directly in the native data representation
of C++.

Such factories separate the caller, who wants an instance of the product type,
from details of the construction process. The caller just selects an appropriate
factory class that can work with the data in an external representation from which
the instance (or instances) should be constructed and the factory handles the details:
It picks up the most suitable constructor based on the available input data (or lets
the application user to pick up the constructor in case of factories using some form
of user interface), gathers the required parameters, converts them into the native
C++ data types, calls the selected constructor with the converted arguments and
returns the constructed instance to the caller.

The mechanism used to automate the implementation of such factory classes is
the compile-time or run-time reflection.

1.2 Reflection

The term reflection refers to the ability of a computer program to examine and pos-
sibly modify its own structure and/or behavior. This includes altering the existing
or building new data structures, doing changes to algorithms or changing the way
the program code is interpreted [3]. Reflective programming is a particular kind of
metaprogramming [2, 4].

Some of the more common use-cases for reflection are listed below:

• serialization or storing the persistent data in an external binary format or in
XML, JSON, XDR, etc.

• deserialization or (re-)construction of class instances from external data rep-
resentations, from the data stored in a RDBS, from the data entered by an
application user through a user interface

• automatic generation of a relational schema from the application object model
and object-relational mapping (ORM)

• support for scripting

• remote procedure calls (RPC)/remote method invocation (RMI)

• object inspection and manipulation in an user interface

• online object access through web services (WS)

• visualization of program data structures, data and the relations in the data



Implementing Factories with Reflection 655

• automatic or semi-automatic implementation of certain software design patterns

• support for logging and debugging

• documentation or conceptual representation of a software system.

These and other use cases are examined for example in [5] and realized by
projects like [6, 7, 8, 9, 10] and others.

A more detailed introduction to reflection and reflective programming and their
usage can be found in other papers by the author [11, 12, 13, 14, 15] and other
publications, for example [3, 16].

Support for reflective programming is more common in the high-level languages,
usually executed inside of a virtual machine, an interpreter or another such run-
time environment, like JAVA, C#, CLOS or Smalltalk [16, 17, 18] and less common
or limited in the lower-level statically typed languages like Objective C, Lisp or
Scheme [3].

2 RELATED WORK

2.1 Reflection in C++

Presently, C++ as one of the most popular (according to [19, 20]) multi-paradigm
programming languages, lacks standard reflection. Some time ago, one of the at-
tempts for standardized reflection for C++ was made in [21], but the work seems
to be on hold recently [22]. A more recent attempt to add “rich pointers” and some
support for static reflection to C++ [23, 24] looks more promising, but does not
address several important aspects like strongly typed enumerations, template pa-
rameters, traversal of namespace members, etc. and is focused mainly on run-time
reflection. This paper’s author is also working on a proposal to add static reflection
to standard C++ [15] which was mailed to the standardizing committee recently.
Other recent interesting compile-time reflection proposals include [25, 26, 27].

There are several non-standard reflection systems, with varying degree of intro-
spective and reflective capabilities, using various approaches.

The OpenC++ [28] is a programming toolkit that allows writing meta-level
source-to-source transformation programs according to a meta-object-protocol [17,
29] at the program preprocessing/parse-time. The meta-level program is compiled
by the GCC C++ compiler linked with an OpenC++ add-on. Unfortunately, only
older compiler versions are supported which makes the approach non-portable and
outdated. Other publications [30, 31] describe a similar source-to-source translator
called FOG, adding support for aspect-oriented programming and basic compile-
time reflection to C++. More common are run-time reflection systems like Seal
C++ reflection system developed at CERN [22], or those described in [18, 32, 33,
34, 35, 36, 37]. There are also several static reflection facilities with some run-time
features, like the one described in [38].
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2.2 Reflection in Implementation of Desing Patterns

Other publications also suggest that reflection could be used for automated im-
plementation of the factory design pattern, one example is [39], but the method
described therein is somewhat limited because it requires that the constructed pro-
duct types have a default constructor which is not applicable to all types.

This technique is also used by several other reflection facilities, with similar
limitations. Other examples of design pattern implementation with the help of
reflection can be found in [29, 40, 41].

In [37] the implementation of the Inversion of Control pattern with the help of
reflection is discussed.

2.3 The Mirror Reflection Utilities

Mirror consists of a set of C++ libraries and utilities which implement portable and
non-intrusive compile-time and run-time introspection and reflection for the C++
language.

These provide reusable metadata reflecting C++ program constructs like name-
spaces, types, classes, base class inheritance, member variables, class templates and
their template parameters, free and member functions, constructors, etc., and im-
plement an extensive set of metaprogramming tools for traversal and usage of these
metadata in compile-time functional and run-time object-oriented algorithms.

It also contains several high-level utilities, for example the factory generator
utility, described in more detail in this paper. It tries to adhere to the three principles
attributed to well-designed reflective facilities [16]: encapsulation, stratification and
ontological correspondence. Unlike many other reflection utilities, the Mirror is not
tailored for a specific problem and is very versatile.

The library and the related tools are implemented as proof-of-concept for a pro-
posal for standardised reflection for the C++ language [15]. The source code is
available for download under the Boost Software License [42] from SourceForge.net
at the following URL: http://sourceforge.net/projects/mirror-lib/files/.

The latest version [10] which is in active development, is using several new
features from the recent ISO standard for the C++ language (C++2011). This
version removes several design problems discovered during the development and
usage of the previous versions and, in addition, it contains a run-time layer, built
on top of the compile-time metaobjects, providing a dynamic, polymorphic object-
oriented interface for their usage in run-time reflective algorithms. Recently, both an
object-oriented compile-time layer and a type-erasure utility have also been added.
This quaternary interface makes the library applicable in a wide range of scenarios.

Mirror has a hierarchic layered architecture where each layer provides services
to the layers above:

Registering and basic metaobjects: Because the standard C++ provides only
a limited set of metadata to build upon, the basic program constructs like name-
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spaces, types, typedefs, classes, variables, functions, constructors, enumerated
values, operators, etc. need to be registered before they can be reflected. Mirror
tries to make the process of registering simple and convenient by providing a set
of user-friendly registering macros and already has the intrinsic types and many
of other common types, classes, templates and namespaces pre-registered. This
is the lowest layer and is used by the applications only to register their compo-
nents. This registering should be replaced in future by static meta-data provided
by the compiler similar to the now standardized type_traits as described for
example in [14].

Functional compile-time layer – Mirror: Mirror is a compile-time functional-
style reflective programming library, which is based directly on the basic meta-
data and suitable for generic programming, similar to the standard type_traits

library. It allows to write compile-time metaprograms which enable the compiler
to generate an efficient program code. Historically it is the first component of
the Mirror reflection utilities.

Object-oriented compile-time layer – Puddle: Puddle is the OOP-style com-
pile-time interface with some run-time features built on top of Mirror. It copies
the metaobject concept hierarchy of Mirror, but provides a more object-oriented
interface. It is still inherently static, allowing for extensive optimization by the
compiler. This may seem to be negligable in cases when the reflection code is
used together with high latency I/O or GUI operations but proves to be crucial
improvement in many cases where too many virtual calls would cause significant
overheads.

Object-oriented type-erasure utility – Rubber: Based on the object-oriented
compile-time layer; its purpose is to remove the exact types of the instances
of the metaobject concepts provided by the lower layers and merge them into
a single polymorphic type for each compile-time metaobject concept. This en-
ables the type-erased metaobjects to be stored in standard containers (like vec-
tors, maps, sets, etc.) and used in non-template functions (for example C++
lambda functions). Unlike the Lagoon layer, it does not use virtual functions to
achieve polymorphism. This utility is suited for situations where a combination
of compile-time and run-time reflection is required.

Object-oriented run-time layer – Lagoon: Based on top of the Mirror and
Puddle layers, it provides a run-time polymorphic interface, more suitable for
run-time reflective programming, allowing the use of the provided metadata in
a dynamic manner dependent on other data available only at run-time. One of
its disadvantages is the performance penalty induced by virtual function calls
and the inability of the compiler to inline such calls in many cases together with
long compilation times. In the future this layer will allow the metainformation
to be compiled into shared dynamic libraries separate from the applications and
load them on-demand.
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Several projects by the author and others (for example [43]) are using Mirror as
a foundation for the implementation of their own functionality.

Since the source code of Mirror consists of more than 60 000 lines of code the
scope of this paper does not allow detailed explanation and discussion of Mirror’s
implementation, for this purpose the reference should be consulted [10].

3 IMPLEMENTING THE FACTORY PATTERN

The purpose of the factory pattern is to separate its user, who requires a new
instance of a product type, from the details of this instance’s construction. The user
just supplies the input data to the factory and waits for the new instance. There
are several aspects that need to be considered when designing and implementing the
factory.

The input data for the construction of an instance of the product may be stored
in an external representation (XML fragment, RDBS database dataset, JSON doc-
ument, etc.) or even entered by the user from a GUI and so on, and would need
to be converted to the native C++ representation. The new instance also might be
constructed as a copy of another already existing instance of the same type.

The product may be polymorphic and the exact type may not even be known
to the user. It may have one or several constructors, each of which may require
a different set of parameters. It may or may not have constructors with a specific
signature, for example a default constructor.

Default constructor does not make sense for many types and forcing it just
because the type will be used with a factory is unsystematic. For example what
a “default” instance of person or address would look like – it would not have any
meaning at all. Thus, well designed factories should not depend on the presence of
a constructor with a specific signature.

Furthermore, it might be desirable that the constructor to be used for the con-
struction of a particular instance is picked based on the available input data which
is known only at run-time, but not when the factory is designed and implemented.

3.1 Design of a Factory

Let us consider a factory for a rather simple vector class representing a vector in
3-dimensional space defined as follows:

struct vector

{

double _x , _y , _z;

vector(double x, double y, double z):

_x(x), _y(y), _z(z) { }

vector(double w): _x(w), _y(w), _z(w) { }

vector(void): _x(0.0), _y(0.0), _z (0.0) { }

vector(const vector &) = default;
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// ... other declarations

};

A naive hand-coded implementation of a factory constructing vectors from
some Data type (for example XML) might look like this:

class vector_factory

{

private:

unsigned pick_constructor(Data data)

{

// somehow examine the data and pick

// the most suitable constructor of the vector class

}

double extract(Data data , string param)

{

// somehow extract and convert the value

// of a named parameter from the data

}

public:

vector create(Data data)

{

switch(pick_constructor(data))

{

case 0: return vector ();

case 1: return vector(extract(data , "w"));

case 2: return vector(

extract(data , "x"),

extract(data , "y"),

extract(data , "z")

);

default: throw exception (...);

}

}

};

Now, let us suppose that there is some pool of existing vector objects and let’s
extend the factory to use this pool and return copies if applicable:

class vector_factory

{

private:

unsigned pick_constructor(Data data)

{

// same as before but also allow the copy

// constructor to be picked if the data says so

}
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double extract(Data data , string param);

public:

vector create(Data data)

{

switch(pick_constructor(data))

{

// same as before , but add a new case

// returning copies from the pool

case 3: return vector_pool.get(data);

default: throw exception (...);

}

}

};

Furthermore, let us add a triangle class, defined by three vectors and its
factory that is using a vector_factory to recursivelly construct parameters for the
construction of the vector parameters required by the constructor:

struct triangle

{

vector _a , _b , _c;

triangle(vector a, vector b, vector c):

_a(a), _b(b), _c(c) { }

triangle(const triangle &) = default;

double area(void) const;

// ... other declarations

};

class triangle_factory

{

private:

unsigned pick_constructor(Data data);

Data subdata(Data data , string param)

{

// somehow get a fragment of data related

// to the specified parameter

}

vector_factory _fact_a , _fact_b , _fact_c;

public:

triangle create(Data data)

{

switch(pick_constructor(data))

{

case 0: return triangle(

_fact_a.create(subdata(data , "a")),
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_fact_b.create(subdata(data , "b")),

_fact_c.create(subdata(data , "c"))

);

// ... etc.

}

}

};

And finally, let us add a tetrahedron class using a vector and a triangle and
its factory:

struct tetrahedron

{

triangle _base;

vector _apex;

tetrahedron(const triangle& base , const vector& apex)

: _base(base), _apex(apex)

{ }

tetrahedron(vector a, vector b, vector c, vector d)

: _base(a, b, c), _apex(d)

{ }

double volume(void) const;

// ... other declarations

};

class tetrahedron_factory

{

private:

unsigned pick_constructor(Data data);

Data subdata(Data data , string param);

// factories for the first constructor

tetrahedron_factory _fact_base;

vector_factory _fact_apex;

// factories for the second constructor

vector_factory _fact_a , _fact_b;

vector_factory _fact_c , _fact_d;

public:

tetrahedron create(Data data)

{

switch(pick_constructor(data))

{

case 0: return tetrahedron(
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_fact_base.create(subdata(data , "base")),

_fact_apex.create(subdata(data , "apex"))

);

case 1: return tetrahedron(

_fact_a.create(subdata(data , "a")),

_fact_b.create(subdata(data , "b")),

_fact_c.create(subdata(data , "c")),

_fact_d.create(subdata(data , "d"))

);

// ... etc.

}

}

};

In order to support various input data representations, the functionality related
to the manipulation with the data could be factored out of the factories and then
used as parameters for them:

class xml_data_handler

{

typedef XMLnode Data;

template <typename T>

T extract(Data data , string param );

Data subdata(Data data , string param);

template <typename Metadata >

unsigned pick_constructor(

Metadata metadata ,

Data data

);

};

class json_data_handler { ... };

class rdbs_data_handler { ... };

// etc.

template <class DataHandler >

class tetrahedron_factory

{

private:

DataHander _hander;

// factories for the first constructor

tetrahedron_factory _fact_base;

vector_factory _fact_apex;
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// factories for the second constructor

vector_factory _fact_a , _fact_b;

vector_factory _fact_c , _fact_d;

public:

tetrahedron create(DataHandler ::Data data)

{

Metadata metadata = /* get metadata */;

switch(_handler.pick_constructor(

metadata ,

data

))

{

case 0: return tetrahedron(

_fact_base.create(_handler.subdata(data , "base")),

_fact_apex.create(_handler.subdata(data , "apex"))

);

case 1: return tetrahedron(

_fact_a.create(_handler.subdata(data , "a")),

_fact_b.create(_handler.subdata(data , "b")),

_fact_c.create(_handler.subdata(data , "c")),

_fact_d.create(_handler.subdata(data , "d"))

);

// ... etc.

}

}

};

When looking at the hand-coded factories above, it is obvious that implementing
and maintaining (as the constructed types evolve and change) factories for several
dozens of classes in a larger application is a highly repetitive, tedious and possibly
error-prone process and at least partial automation is desirable.

3.2 Factory Dissection

Factory classes must generally handle several tasks which fit into two distinct and
nearly orthogonal categories:

Product type-related

Constructor description – providing the metadata describing the individual
constructors, their parameters, etc.

Constructor dispatching – calling the selected constructor with the supplied
arguments which results in a new instance of the product type.
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Input data representation-related

Input data validation – checking if the input data match the available con-
structors.

Constructor selection – examining the input data, comparing it to the meta-
data describing product’s constructors and determining which constructor
should be called.

Getting the argument values – determining where the argument values
should come from and getting them:

Conversion from the external representation – this usually applies to intrinsic
C++ types, but complex types could be converted directly, too.

Recursive construction by using another factory – this usually requires some
form of cooperation between the parent and its child factories and it means that
all the tasks discussed here must be repeated also for the recursivelly constructed
parameter(s).

Copying an existing instance – for example from an object pool.

Parts from each category can be combined with parts from the other to create
new factories what promotes code reusability. Factories constructing instances of
a single product from various data representations share the product-related com-
ponents and factories constructing instances of various product types from a single
input data representation share the input-data-related parts. This approach has sev-
eral advantages like better maintainability or the ability to develop the components
separatelly and combine them later.

3.3 Initialization and Cleanup

An important aspect of factory implementation is that factory instances need to be
properly initialized before they are used and cleaned-up when they are no longer
needed. For factories using GUI to get the input data this involves programmatically
building the GUI from appropriate components used to select the constructors, data
input and validation.

Moreover, repeating this procedure for every constructed instance of product
would be a significant waste of resources – the GUI should be set-up once, reused
during the lifetime of the factory and properly cleaned-up afterwards. Factories
doing the construction from other input data representation may require similar
initialization and cleanup procedures.

3.4 Automating Factory Class Implementation

As noted above, several parts of every factory are related to its product type and
the implementation of these parts follows distinct patterns that can be algorith-
mized. The input data for the algorithm is the metadata describing the product
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type (specifically its constructors) and the result of the algorithm is the program
code of the said parts. This is where reflection comes as the source of the metadata
and metaprogramming and generic programming as the tools for implementing the
metaalgorithm that is executed by a C++ compiler.

4 MIRROR’S FACTORY GENERATORS

Mirror implements two distinct frameworks for generating such factories; one work-
ing at compile-time and the other dynamically at run-time. The former’s advantage
is that the compiler has access to the whole code and can do extensive optimiza-
tions like function inlining or removing unused code. The disadvantage is that the
types for which the factories are generated must be known at compile-time. The
latter allows to construct factories for types described by run-time reflection which
can be loaded dynamically. The cost is some performance overhead and possibly
an increased code size.

4.1 Compile-Time Factory Generator

4.1.1 Input Data-Related Parts

The compile-time factory generator defines four concepts for the input data repre-
sentation-related parts of the factory:

Manufacturer – defines the interface for a component of the factory responsible
for the conversion of input data from an external representation to the native
C++ data types or recursive construction by the means of another factory. More
precisely models of this concept are templates that are parametrized by the type
they are returning. The user-defined manufacturers usually provide several spe-
cializations for types that are considered atomic (Booleans, numbers, strings and
possibly others) and the default implementation of the template makes the re-
cursive construction. Manufacturers basically implement the same functionality
as the extract and subdata functions in the factories in the examples above.

Enumerator – defines the interface for a component of the factory that handles
the input of values of C++ enumerated types. Enumerator is similar in function
to Manufacturer, but enumerations are specific and therefore handled differently.

Manager – interface for components responsible for choosing the constructor to
be used in the construction of a particular instance. Manager does the job of
the pick_constructor function from the examples above. A specialization for
the void type of a concrete Manufacturer is used as a manager. Using this
specialization instead of a separate class is advantageous, because we can use
one less template parameter in the factory generator template, and the void

type cannot be instantiated anyway.
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Suppliers – optionally, if there is a pool of existing objects that can be used to
create copies of product instances, the application can use models of the Sup-
pliers concept to select and return an existing instance, like the vector_pool

object in the examples above. There could even be several sources of existing
instances – hence the plural name.

An application wishing to use a generated factory must implement types mod-
elling these concepts (called factory generator plug-ins), but Mirror already provides
several reusable implementations:

• A wxWidgets-based generator plug-in which allows the user to select the con-
structor and input the necessary data via automatically generated GUI.

• A libpq-based generator plug-in allowing to construct instances from a dataset
obtained through a SQL query from a PostgreSQL database.

• A SOCI-based generator plug-in similar to the previous one but allowing to use
other RDB systems.

• A generator plug-in using JSON (JavaScript Object Notation) parser allowing to
construct instance from JSON documents (obtained for example from a REST-
ful web service).

• A wxXML and rapidxml-based plug-ins allowing to generate factories constructing
instances from XML documents.

• A Boost.Filesystem-based generator plug-in for construction of objects from
data stored in files in a directory hierarchy.

• A Boost.Spirit-based plug-in using a parser to get the input data from a simple
C++-like scripting language.

• A plug-in that serves as a framework for the implementation of run-time factory
generators described in Subsection 4.2.

The factory generator is a template which takes the product type and concrete
templates modeling the manufacturer, enumerator, manager and suppliers concepts
and “returns” the desired factory type, by using metadata describing the product
obtained by reflection. The concrete instantiations of the manufacturer, enumerator
and suppliers templates are generated as private member variables of the returned
factory.

4.1.2 Design and Implementation of the Generator

The following pseudo-code shows roughly how the generator works, however, note
that the actual implementation is more complex as explained further below.

The pick_source is a helper class that decides whether Manufacturer, Enumer-
ator or Suppliers should be used as the source of a parameter value:

template <

template <class > class Manufacturer ,
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template <class > class Enumerator ,

template <class > class Suppliers ,

typename Product ,

// additional metadata used to decide

// which of the above will be used

// as the source of a parameter when

// calling a constructor

> struct pick_source

{

// defined based on the additional metadata

typedef

// either as ...

Manufacturer <Product >

// ... or as ...

Enumerator <Product >

// ... or as

Suppliers <Product >

type;

};

The constructor is a helper class encapsulating a single constructor of product
and the parameter sources:

template <

template <class > class Manufacturer ,

template <class > class Enumerator ,

template <class > class Suppliers ,

typename Product ,

// Additional metadata describing a single

// constructor and its parameters

> struct constructor

{

private:

std::tuple <

pick_source <

Manufacturer ,

Enumerator ,

Suppliers ,

Product ,

// the additional metadata

>::type ...

> sources;

public:

Product operator ()( void)

{

// use the product ’s constructor and use

// the individual sources from the tuple
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// to get the required parameter values

return Product(std::get <... >( sources )() ...);

}

};

Now the factory uses a Manager to pick the constructor and a set of
constructors one of which is (based on the picked index) used to construct a new
instance:

template <

template <class > class Manufacturer ,

template <class > class Enumerator ,

template <class > class Suppliers ,

typename Product ,

// Additional metadata describing the product

> struct factory

{

private:

Manufacturer <void > manager;

std::tuple <

constructor <

Manufacturer ,

Enumerator ,

Suppliers ,

Product ,

// the additional metadata

>::type ...

> constructors;

Product dispatch_constructor(unsigned index)

{

// something equivalent to:

switch(index)

{

case 0: return std::get <0>( constructors )();

case 1: return std::get <1>( constructors )();

case 2: return std::get <2>( constructors )();

// etc.

}

// something failed

throw exception (...);

}

public:

factory(InputData input_data)

: manager(input_data)
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, constructors(input_data ...)

{

// register all constructors

// with the manager , do this

// for all constructors

// in the tuple

manager.add_constructor(std::get <... >( constructors )...);

}

Product operator ()( void)

{

// use the manager to pick the index

// and then call the selected constructor

return dispatch_constructor(manager.pick_index ());

}

};

4.1.3 Factory Generator Plug-Ins

As stated before, the input data-related parts of factories are implemented by the
factory generator plug-ins. The Manufacturer template has the following interface:

template <typename Product >

class some_manufacturer

{

public:

template <class InputData , class ConstructionInfo >

some_manufacturer(

InputData& input_data ,

ConstructionInfo ctr_info

);

template <class InputData >

void finish(InputData& input_data );

Product operator ()( void);

};

The constructor takes two parameters: A representation of the input data which
depends on the external representation. For RDBS plug-ins, the input data may
be an open dataset; for GUI-generating plug-ins this may be the reference to the
parent GUI component; for scripting language plug-ins this may be the reference to
the script parser, etc.

In RDBS plug-ins the constructor is responsible for finding the right dataset
column from which the input values will be read, but the constructor can also make
changes to the input data; in the case of GUI plug-in the manufacturer can create
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a new GUI component for the input of data necessary for the construction of a value
of Product type, in case of a scripting plug-in the manufacturer can add new parsing
rules to the parser.

The ConstructionInfo parameter provides contextual information about the
construction. For example in a factory constructing instances of tetrahedron as
described above, the manufacturers constructing the values of the individual vector
coordinate may need to know that the double value is the coordinate x, of the
vertex a, of the triangle apex of the tetrahedron. Such information is necessary
for example in XML or JSON-based plug-ins which need to search a document tree
hierarchy using the names of the input parameters.

The finish function is called after all other manufacturers in the factory are
constructed and allows to do late-initialization, for example if access to sibling or
child manufacturers is required.

The function call operator is responsible for the actual construction of instances
of Product from the input data provided in the manufacturer’s constructor. For
RDBS plug-ins this involves calling the appropriate funtion of the database access
library and converting the result into the Product type (in the libpq plug-in the
::PQgetvalue function is used). A manufacturer in GUI plug-in reads, validates
and converts the value entered by a user into a visual component, etc.

The Enumerator has the same interface and a very similar function as Manu-
facturer, but it converts (usually a textual) representation of the enumeration value
name into the actual C++ value. GUI enumerators usually create visual compo-
nents (like Pickboxes) that allow the user to choose from a list of options. In other
plug-ins the enumerators usually store a list of names of valid enumeration values
and match them to the actual input data.

The Suppliers component has also the same interface as the Manufacturer, but
instead of creating new instances from external representations it can access a pool
of existing instances and return them in the Product operator ()(void) operator.

The Manager is responsible for managing and choosing the right constructor
and has the following interface:

template <>

class some_manufacturer <void >

{

public:

template <class InputData , class Context >

inline some_manufacturer(

InputData& input_data ,

Context context

);

template <class InputData >

void finish(InputData& input_data );

template <class InputData , class ConstructorInfo >
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InputData& add_constructor(

const InputData& input_data ,

ConstructorInfo ctr_info

);

int index(void);

The constructor and the finish function have responsibilities very similar to
those in Manufacturer. They take some representation of the input data and con-
textual information.

The add_constructor function is called by the factory generator once per each
constructor in the Product type. The task of this function is to register a new con-
structor. It can do so by scanning both the input data and constructor metadata,
provided by the ConstructorInfo parameter. The metadata includes information
about the parameters of the constructor and some additional contextual informa-
tion. In GUI plug-ins this function can for example add a new container component
in which the child components generated by the nested Manufacturers will be con-
tained. In RDBS plug-ins this function may compile a list of dataset columns that
need to be available and contain valid values in order the particular constructor is
usable.

The index member function is called by the factory generator, when a new
instance of Product is constructed and a constructor needs to be selected. In GUI
plug-ins the index function can for example determine which component has focus
(for example which page on a page-control component was selected by the user)
and return the index of the matching constructor. In RDBS plug-ins the manager
scans the current row of the open dataset and matches the names and types of
the available columns to the metadata describing the constructors and return the
constructor with the most parameters for which all values are available. In XML or
JSON plug-in a document fragment hierarchy elements can be scanned, and again,
the constructor with the most parameters that can be satisfied is selected.

4.1.4 Further Details

In order to be truly versatile, the factory generator must supply additional param-
eters to the concrete Manufacturers, Enumerators, Suppliers and Managers.

In contrast to the pseudo-code above, in Mirror these concepts take an additional
template parameter called Traits which is specific to a concrete implementation of
the plug-ins and may change their behaviour.

Also, in some situations, for example when generating GUI as a part of the
factory some contextual data may be required, such as a vector is constructed not
as the factory result but as a parameter for the construction of a triangle which
is used as a parameter in the construction of a tetrahedron. This information can
help the factory to adjust the GUI accordingly.

Mirror’s implementation takes care of these details, for the full source code
please refer to the Mirror’s source repository and/or documentation [10]. Detailed
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description of the implementation of one of the Mirror’s factory generator plug-ins
will be the topic of another paper.

4.1.5 Usage

The first example shows what the library user needs to do to re-construct a class from
a relational database using the libpq-based factory. To work properly, it expects
that a table with the following definition is present in a database called “test” and
contains some data.

CREATE TABLE person (

first_name TEXT NOT NULL,

middle_name TEXT.

family_name TEXT NOT NULL,

birth_date DATE,

sex VARCHAR(6),

weight FLOAT,

height FLOAT

);

We want to re-construct instances of a user-defined person class from the data
stored in a PostgreSQL database. The person class and the gender enumeration
used by it have the following definition:

#include <string >

#include <ctime >

namespace test {

enum class gender

{

female ,

male

};

struct person

{

std:: string first_name;

std:: string middle_name;

std:: string family_name;

std::tm birth_date;

gender sex;

float weight;

float height;
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person(

const std:: string& _first_name ,

const std:: string& _family_name ,

const std::tm _birth_date ,

gender _sex ,

float _weight ,

float _height

): first_name(_first_name)

, family_name(_family_name)

, birth_date(_birth_date)

, sex(_sex)

, weight(_weight)

, height(_height)

{ }

person(

const std:: string& _first_name ,

const std:: string& _middle_name ,

const std:: string& _family_name ,

const std::tm _birth_date ,

gender _sex ,

float _weight ,

float _height

): first_name(_first_name)

, middle_name(_middle_name)

, family_name(_family_name)

, birth_date(_birth_date)

, sex(_sex)

, weight(_weight)

, height(_height)

{ }

};

} // namespace test

The enclosing test namespace, the enumeration and the class with its member
variables and constructors need to be registered with Mirror in the following way
(the native C++ types are already pre-registered):

#include <mirror/mirror.hpp >

#include <mirror/meta_class.hpp >

#include <mirror/meta_enum.hpp >

#include <mirror/pre_registered/type/native.hpp >

MIRROR_REG_BEGIN

MIRROR_QREG_GLOBAL_SCOPE_NAMESPACE(test)
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MIRROR_REG_ENUM_BEGIN(test , gender)

MIRROR_REG_ENUM_VALUE(female)

MIRROR_REG_ENUM_VALUE(male)

MIRROR_REG_ENUM_END

MIRROR_REG_CLASS_BEGIN(struct , test , person)

MIRROR_REG_CLASS_MEM_VARS_BEGIN

MIRROR_REG_CLASS_MEM_VAR(_, _, _, first_name)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, middle_name)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, family_name)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, birth_date)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, sex)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, weight)

MIRROR_REG_CLASS_MEM_VAR(_, _, _, height)

MIRROR_REG_CLASS_MEM_VARS_END

MIRROR_REG_CONSTRUCTORS_BEGIN

MIRROR_REG_COPY_CONSTRUCTOR(public)

MIRROR_REG_CONSTRUCTOR_BEGIN(public , 1)

MIRROR_REG_CONSTRUCTOR_PARAM(_, first_name)

MIRROR_REG_CONSTRUCTOR_PARAM(_, family_name)

MIRROR_REG_CONSTRUCTOR_PARAM(_, birth_date)

MIRROR_REG_CONSTRUCTOR_PARAM(_, sex)

MIRROR_REG_CONSTRUCTOR_PARAM(_, weight)

MIRROR_REG_CONSTRUCTOR_PARAM(_, height)

MIRROR_REG_CONSTRUCTOR_END (1)

MIRROR_REG_CONSTRUCTOR_BEGIN(public , 2)

MIRROR_REG_CONSTRUCTOR_PARAM(_, first_name)

MIRROR_REG_CONSTRUCTOR_PARAM(_, middle_name)

MIRROR_REG_CONSTRUCTOR_PARAM(_, family_name)

MIRROR_REG_CONSTRUCTOR_PARAM(_, birth_date)

MIRROR_REG_CONSTRUCTOR_PARAM(_, sex)

MIRROR_REG_CONSTRUCTOR_PARAM(_, weight)

MIRROR_REG_CONSTRUCTOR_PARAM(_, height)

MIRROR_REG_CONSTRUCTOR_END (2)

MIRROR_REG_CONSTRUCTORS_END

MIRROR_REG_CLASS_END

MIRROR_REG_END

The registering macros are verbose, but Mirror can auto-detect many propreties
of the registered member variables, constructors, functions, etc. (like the type, con-
stness, linkage or access specifiers) or reasonable defaults can be used. The _ argu-
ments in the code above indicate that Mirror should detect the values.
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Once the user-defined types are registered, the Mirror’s libpq-based factory
generator can be used out of the box, by including the appropriate header file:

#include <mirror/utils/libpq_factory.hpp >

The usage is quite straightforward. The object-relational mapping is created
automatically from the meta-data describing the person (or any other reflected
class), when a new instantiation of the factory generator for a particular Product

type is created, by means of the libpq_factory_maker class.

#include <mirror/stream.hpp >

#include <iostream >

#include <stdexcept >

int main(void)

{

try

{

using namespace mirror;

// connect to the database

libpq_fact_db test_db("dbname=test");

// query data about persons

libpq_fact_result persons =

test_db.query("SELECT * FROM person");

// make a person object factory

libpq_factory_maker ::factory <test::person >:: type

person_factory(persons.data ());

// go through the rows of the data -set

while (! persons.empty ())

{

std::cout <<

// make a person from the data

// and write it to std output

// using a JSON formatter

stream :: to_json ::from(

person_factory (),

[& persons ](std:: ostream& out)

{out << "person_" << persons.position ();}

) << std::endl;

persons.next ();

}

}

catch(const std:: exception& error)

{

std::cerr << error.what() << std::endl;

}

return 0;

}
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For the full source code of the example above and for other examples refer to [10].
Figure 1 shows a screenshot of an input dialog window generated by the wxWidgets

factory generator plug-in, for a tetrahedron class which was described above. The
dialog contains a hierarchy of visual components for the selection of constructors to
be used (each constructor is contained on a separate wxChoicebook panel) and for
the input of parameter values. The input fields are validated using wxValidators
which prevent the user from entering invalid values.

Figure 1. Example of a graphic user interface dialog constructed by an automatically gen-
erated factory

4.2 Run-Time Factory Generator

As already mentioned above, the drawback of the compile-time factory generator is
that it requires the metadata reflecting the product type at compile-time. There
are situations when it is desirable to generate a factory for a type specified only at
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run-time (for example based on user preference). The polymorphic factory generator
implemented by the Lagoon layer of Mirror aims to provide a solution.

4.2.1 Interfaces

Instead of compile-time concepts, Lagoon defines a set of abstract interfaces (structs
with virtual functions), several of which are used to represent parts of a polymorphic
factory:

First there is the polymorph_factory_context interface that stores information
about the context in which a factory component is used. For the exact definition
see [10].

struct polymorph_factory_context { ... };

Then, there is the polymorph_factory_manager interface for objects having
the same role as the Managers in the compile-time factories; it is responsible for
selecting a constructor. Note, that the manager uses a raw_ptr type to pass on
data. raw_ptr is a type erasure for pointers – basically a more safe void*.

struct polymorph_factory_manager

{

virtual raw_ptr data(void) { return raw_ptr (); }

virtual raw_ptr add_constructor(

raw_ptr data ,

const shared <meta_constructor >& constructor ,

const polymorph_factory_context& context ,

bool backward_iteration

) { return raw_ptr (); }

virtual void finish(raw_ptr data) { }

virtual int index(void) = 0;

};

The polymorph_factory_composite is an interface for manufacturers of com-
plex types – i.e. types that recursivelly use other factories to supply parameters for
their constructors.

struct polymorph_factory_composite

{

virtual raw_ptr data(void) { return raw_ptr (); }

virtual void finish(raw_ptr data) { }

virtual void on_create(void) { }

};

Next, there is the polymorph_factory_arrayer interface for components cre-
ating a sequence of elements used in container type construction.
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struct polymorph_factory_arrayer

{

virtual raw_ptr data(void) { return raw_ptr (); }

virtual void finish(raw_ptr data) { }

struct element_producer

{

virtual ~element_producer(void) { }

virtual void reset(void) = 0;

virtual void make_next(void) = 0;

};

virtual void assign_producer(element_producer& producer)

{ }

virtual void create(element_producer& producer) = 0;

};

Then follow the interfaces for manufacturers, enumerators and suppliers.

template <typename Product >

struct polymorph_factory_manufacturer

{

virtual void finish(raw_ptr parent_data) { }

virtual Product create(void) = 0;

};

struct polymorph_factory_enumerator

{

virtual void finish(raw_ptr parent_data) { }

virtual int create(void) = 0;

};

struct polymorph_factory_suppliers

{

virtual void finish(raw_ptr parent_data) { }

virtual raw_ptr get(void) = 0;

};

Finally the polymorph_factory_builder is an interface for a builder class that
on-demand creates the individual factory components as required for a specific prod-
uct type. The process is described in greater detail below:

struct polymorph_factory_builder

{

// Defined for each native Product type

virtual std:: shared_ptr <

polymorph_factory_manufacturer <Product >
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> make_manufacturer(

raw_ptr parent_data ,

const shared <meta_parameter >& ctr_param ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <

polymorph_factory_manager

> make_manager(

raw_ptr parent_data ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <

polymorph_factory_composite

> make_composite(

raw_ptr parent_data ,

const shared <meta_parameter >& func_param ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <

polymorph_factory_composite

> make_composite(

raw_ptr parent_data ,

const shared <meta_type >& product ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <

polymorph_factory_arrayer

> make_arrayer(

raw_ptr parent_data ,

const shared <meta_type >& element ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <

polymorph_factory_suppliers

> make_suppliers(

raw_ptr parent_data ,

const shared <meta_parameter >& ctr_param ,

const polymorph_factory_context& context

) = 0;

virtual std:: shared_ptr <
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polymorph_factory_enumerator

> make_enumerator(

raw_ptr parent_data ,

const shared <meta_parameter >& ctr_param ,

const polymorph_factory_context& context

) = 0;

};

These serve to build polymorphic factories which are represented by the
polymorph_factory interface:

struct polymorph_factory

{

virtual raw_ptr new_(void) = 0;

};

The meta_type interface among (many) other things declares the make_factory
function, that uses a builder to dynamically create a factory specific for the type
reflected by that meta_type:

struct meta_type

{

// ...

virtual std:: unique_ptr <

polymorph_factory

> make_factory(

polymorph_factory_builder& builder ,

raw_ptr build_data

) = 0;

// ...

};

The implementations of this function (in concrete meta_types reflecting con-
crete types) basically use the compile-time generator to create a factory that has
special manufacturers, enumerators, suppliers and managers that use the polymor-
phic components created by the factory builder that was passed as argument to
make_factory. In this way the concrete metatypes and concrete implementations
of factory builders can be combined at run-time.

4.2.2 Usage

The following example shows the usage of a polymorphic dynamically generated
factory to create a std::vector of values of user-defined type, from a text in a simple
scripting language:

#include <mirror/mirror_base.hpp >

#include <mirror/pre_registered/basic.hpp >
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#include <mirror/pre_registered/class/std/vector.hpp >

#include <mirror/pre_registered/class/std/map.hpp >

#include <mirror/utils/quick_reg.hpp >

#include <lagoon/lagoon.hpp >

#include <lagoon/utils/script_factory.hpp >

#include <iostream >

namespace morse {

enum class signal : char { dash = ’-’, dot = ’.’ };

typedef std::vector <signal > sequence;

typedef std::map <char , sequence > code;

} // namespace morse

// register the user defined types

MIRROR_REG_BEGIN

MIRROR_QREG_GLOBAL_SCOPE_NAMESPACE(morse)

MIRROR_QREG_ENUM(morse , signal , (dash)(dot))

MIRROR_REG_END

int main(void)

{

try

{

using namespace lagoon;

// use a builder implemented by Lagoon

c_str_script_factory_builder builder;

// and its input data

c_str_script_factory_input in;

auto data = in.data ();

// reflect the morse::code type

auto meta_morse_code =

reflected_class <morse::code >();

// use the metatype and the builder

// to make a new factory for instances

// of morse::code

auto morse_code_factory =

meta_morse_code ->make_factory(

builder ,

raw_ptr (&data)
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);

// the input text

const char input [] = "{ \

{’A’, {dot , dash}}, \

{’B’, {dash , dot , dot , dot}}, \

{’C’, {dash , dot , dash , dot}}, \

{’D’, {dash , dot , dot}}, \

{’E’, {dot}}, \

// ... rest ommited for sake of brevity

{’Z’, {dash , dash , dot , dot}}, \

{’1’, {dot , dash , dash , dash , dash}}, \

{’2’, {dot , dot , dash , dash , dash}}, \

// ... rest ommited for sake of brevity

{’9’, {dash , dash , dash , dash , dot}}, \

{’0’, {dash , dash , dash , dash , dash}} \

}";

// set the input data

in.set(input , input+sizeof(input ));

// use the factory to create a new instance

raw_ptr pmc = morse_code_factory ->new_ ();

// cast the raw pointer to the right type

morse ::code& mc = *raw_cast <morse ::code*>(pmc);

// go through the values in the container

for(auto i=mc.begin(), e=mc.end(); i!=e; ++i)

{

// print the character and its morse code

std::cout

<< "Morse code for ’"

<< i->first

<< "’: ";

auto j = i->second.begin(),

f = i->second.end();

while(j != f)

{

std::cout << char(*j);

++j;

}

std::cout << std::endl;

}

// use the metatype to delete the instance

meta_morse_code ->delete_(pmc);
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}

catch(std:: exception const& error)

{

std::cerr << error.what() << std::endl;

}

return 0;

}

This application prints the following to the standard output (abbreviated here):

Morse code for ’0’: -----

Morse code for ’1’: .----

Morse code for ’2’: ..---

...

Morse code for ’9’: ----.

Morse code for ’A’: .-

Morse code for ’B’: -...

Morse code for ’C’: -.-.

...

Morse code for ’Z’: --..

5 CONCLUSION AND FURTHER WORK

In this paper we described a method for semi-automated implementation of the
factory design pattern in C++ by using the Mirror reflection utilities.

The Mirror utilities are still in development and serve as a proof-of-concept
implementation for a proposal to add support for reflection to the C++ standard.

The factories generated by the utility provided by Mirror can be used by ap-
plications directly or can be composed into more complex components. The same
approach used to invoke constructors by the factories can be used to call arbitrary
functions. The (still experimental) invoker-generator in Mirror can be used to gen-
erate such invoker classes.

Another planned utility – the manipulator generator will use a similar approach
to generate classes which can manipulate existing instances of arbitrary reflectible
types. Such manipulators could be used to serialize existing instances to XML,
JSON, etc. or to show them in GUI and allow the user to manipulate their values.
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where he currently works as Assistant Professor in the Depart-
ment of Informatics. His research is centered on implementation
of compile-time reflection for the C++ programming language,
meta-programming and generic programming techniques. He is
also interested in hardware accelerated computer graphics, GPU
programming and graphics algorithms.


