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Abstract. Color constant image description is a fundamental problem in many
computer vision applications. In this paper, the diagonal-offset model is adopted
as reflectance model to get color constant image descriptors. This model makes the
descriptors much more robust, and also fits the real world images very well. By

introducing 3D moment invariants, this paper contributes to give an illumination
independent descriptor generation framework. In detail, 0-, 1- and even higher
order color constant descriptors can be generated from such framework. These
descriptors can characterize n-order derivative image information. Furthermore,
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the combination thereof can characterize not only original image but also n-order

edge image color information. The experiments on real image databases show that
all these descriptors are robust to illumination variation and affine transformation,
and perform very well for object recognition under various situations.
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1 INTRODUCTION

The image recorded by a camera depends on three factors: the physical content of the
scene, the illumination incident on the scene, and the characteristics of the camera.
Different illuminations can result in different colors of same object. Fortunately,
humans have the ability of color constancy: they perceive the same color of an object
despite large various illuminations. Color has proven to be simple, straightforward
information in object matching. Consequently, the similar color constancy capability
is also necessary for computer vision system for removing illumination effect to
successfully index objects. There are two major solutions: The first one is estimating
the illumination characteristics and directly mapping the image into that under a
canonical illumination. Although a variety of illumination estimation methods [1, 2]
as well as some combinational strategies [3] have been proposed in the past decades,
their performances and generalities are not enough to be systematically applied in
a large number of objects’ recognition [4]. The second one is representing images
by features which are independent of the light source, which is called color invariant
or color constant descriptor, so they do not depend on the performance of color
constancy algorithm. A number of techniques belonging to this category have been
reported in [4–11].

Swain and Ballard [5] developed an indexing scheme that recognized the object
using color histogram intersections. Although this method is insensitive to geometric
transformation, the performance will degrade when light conditions change, as color
information from any imaging device depends on not only the characteristics of the
object but also on the spectral power distribution of the light incident on it. Funt and
Finlayson[6] deduced a set of color constant derivatives based on physical reflection
model. They presented a descriptor, named color constancy color indexing (CCCI),
by matching histogram of color ratios between neighboring pixels [6]. Gevers and
Smeulders [7] extended CCCI technique to account for the effect of both illumination
color and shading. Adjeroh and Lee [8] proposed another color ratio based feature
by integrating the variation between any pixel and its neighbors. J. van de Weijer
et al. [9, 10] introduced ratio of image derivatives to the edge-based color constant
descriptors. Although these methods have been shown to be superior to Swain’s
method in the presence of illumination change, they work along the image edges
while ignoring the wealthy information from the original image itself. The derivatives
are easily affected by noises for those darker regions; and are close to 0 for those
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uniform regions. Beside derivative-based descriptors, G. D. Finlayson et al. [11] have
proposed another descriptor in outdoor illumination for shadow removal; but this
descriptor needs camera parameters, which is inconvenient for practical applications.
The moment invariants are also introduced to get color invariants by L. V. Gool
et al. [12]. However, they paid more attention to image color content, ignoring the
contours and edges information in images. As we all know, both image color and
edge color information are very important for most computer vision applications.

In this paper, 3D moment invariants are introduced into illumination indepen-
dent image description. An illumination independent descriptor generation frame-
work is given. 0-, 1- and even higher order descriptors can be generated from it.
Different from derivative-based descriptors, we can characterize both original image
color and n-order edge color by using the descriptors generated from the frame-
work. All these descriptors are invariant to illumination and affine transformation.
Furthermore, the 0-order descriptor is robust to image blurring change as well.

The rest of this paper is organized as follows. In Section 2, diagonal-offset model
is described. Then we explain the details of color constant descriptors using 3D
moment invariants in Section 3. The experimental results are presented in Section
4. Section 5 concludes this paper.

2 DIAGONAL-OFFSET MODEL

According to the Lambertian reflectance model, the image f = (R,G,B)T can be
computed as follows:

f(X) =
∫

ω
e(λ)S(X, λ)c(λ)dλ (1)

where X is the spatial coordinate, λ is wavelength and ω represents the visible
spectrum. e(λ) is spectral power distribution of light source, S(X, λ) is the surface
reflectance, and c(λ) is the camera sensitivity function of three responses. Because
the Lambertian model is much more ideal, Shafer proposed to add a “diffuse” light
term to this model [13]. The diffuse light has a lower intensity and comes from all
directions in an equal amount:

f(X) =
∫

ω
e(λ)S(X, λ)c(λ)dλ+

∫

ω
α(λ)c(λ)dλ (2)

where α(λ) is the term that models the diffuse light. This equation can model the
objects under daylight well, since daylight consists of both a point source (the sun)
and diffuse light coming from the sky; so this model is much better for natural
images and much more robust than Equation (1).

The aim of many color constancy applications is to transform all colors of the
input image f1, taken under a light source e1, to colors as they would appear as f2
under a reference light e2. This transformation can be modeled by a diagonal model
or von Kries Model [13].

f1 = D1,2f2 (3)
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where D1,2 is a diagonal matrix. In the (R,G,B)T color space, the transformation
can be written as:
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However, this diagonal model is too strict. It cannot satisfy the situations under
some conditions, for example saturated colors. To overcome these problems, Fin-
layson et al. [14] proposed a more robust diagonal-offset model by adding an offset
term to the diagonal model.
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Interestingly, the diagonal-offset model also takes diffuse lighting into account, which
consists with Equation (2). The n-order derivative for (R,G,B)T can be computed
as:
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where ∂n

∂Xn
is n-order derivative for (R,G,B)T . If n > 0, (o1, o2, o3)

T = (0, 0, 0)T .
According to Equation (6), the same object’s n-order derivative color change caused
by illumination conforms to the affine transformation. Thus the illumination color
changes can be considered as comprising scaling combined with an offset for each
color band.

3 COLOR CONSTANT DESCRIPTORS

USING 3D MOMENT INVARIANTS

From Equation (6), the two factors, offset and scale, must be normalized to remove
illumination affect to color. In this section, introducing the 3D moment invariants,
we propose a unified framework for color constant image description.

3.1 General Color Moments

In order to simplify description, we use ∂nf instead of ∂nf

∂Xn
= ( ∂

nR
∂Xn

, ∂nG
∂Xn

, ∂nB
∂Xn

)T in
the following sections. The u+v+w order moment ∂nMuvw of the n-order derivative
image is defined as follows:

∂nMuvw =
∫ ∫ ∫

∂nf
RuGvBwρ(R,G,B)dRdG dB. (7)

The density function ρ(R,G,B) is defined as the percentage of each color value in
∂nf .

ρ(R,G,B) =
Num(R,G,B)

pixNum
(8)
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The pixNum is image size of ∂nf , while the Num(R,G,B) represents the total
number of pixels with value of (R,G,B)T in the ∂nf . The centroid of the color
distribution in ∂nf can be computed as:

R =
∂nM100

∂nM000

, G =
∂nM010

∂nM000

, B =
∂nM001

∂nM000

. (9)

In order to remove the offset (o1, o2, o3)
T in Equation (3), the central moment is

defined as:

∂nµuvw =
∫ ∫ ∫

∂nf
(R−R)u(G−G)v(B − B)wρ(R,G,B)dRdG dB. (10)

The central moment is invariants under translation. Obviously, ∂nµ001 = ∂nµ010 =
∂nµ100 = 0. According to the Equations (6) and (10), the relationship between
(∂nµuvw)1, the central moment in ∂nf1, and (∂nµuvw)2, the central moment in ∂nf2,
can be obtained as:

(∂nµuvw)1 = αuβvγw

∣
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∣
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∣

∣

∣

∣

(∂nµuvw)2 = αu+1βv+1γw+1(∂nµuvw)2. (11)

From Equation (11), the scale factors α, β, γ can be normalized in Equation (12) to
get moment invariants.

∂nηuvw =
(∂nµ000)

u+v+w+3

3

(∂nµ300)
u+1

3 (∂nµ030)
v+1

3 (∂nµ003)
w+1

3

∂nµuvw (12)

In Equation (12), the ∂nηuvw is invariant not only to the offset factor but also to
the scale factor; so it is independent of illumination to use this moment invariant to
characterize images.

3.2 Color Constant Descriptors Using Moment Invariants

Two important criteria are given to guide using ∂nηuvw to construct a color constant
image descriptor [12]:

1. Keep the moment order u + v + w as low as possible. Because if u + v + w is
higher, the moment invariants are easier to be affected by noise. For the same
reason, we also keep n not very large.

2. Include as many low-order moment invariants as possible. According to the
two principles, 13 candidate moment invariants are used to construct the image
description vector ∂nJ .

∂nJ = [∂nη002, ∂
nη020, ∂

nη200, ∂
nη011, ∂

nη101, ∂
nη110, ∂

nη111,
∂nη012, ∂

nη021, ∂
nη102, ∂

nη120, ∂
nη201, ∂

nη210]
(13)
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In this paper, we select all of them to construct description vector. With different
n, this color constant descriptor framework can be decomposed as follows:

• n = 0, original image color constant descriptor J . In this situation, (∂nR, ∂nG,
∂nB)T = (R,G,B)T , the ∂nJ degenerates as J , which just describes color con-
tent of original image.

• n > 0, edge image color constant descriptor ∂nJ . When n = 1,(∂R, ∂G, ∂B)T is
just the image edge color information. The ∂J can describe the image edge color.
Even when n > 1, the higher order image edge color constant descriptor can be
obtained. The proposed descriptor can characterize different order derivative
images.

• Combinational color constant descriptor CJ . We combine the 0- and n-order
moment invariant vectors to construct an integrated description vector as CJ =
[J, ∂J, ∂2J, . . .]. The combinational vector can describe not only original image
but also the n-order edge image.

4 EXPERIMENTS

In the section, three descriptors J, ∂J and CJ = [J, ∂J ] will be tested in various
situations. To evaluate the performance of the proposed descriptors, object recog-
nition experiment based on two image databases are conducted in terms of their
robustness to two conditions: light source change and geometric affine transforma-
tion. Group (A) consists of 172 images of 17 scenes under 11 varying illuminations,
which are picked out from the 321 images of 30 scenes [2] by removing some darker
images. Group (B) consists of 220 images of 20 scenes under 11 varying illumi-
nations [15] which have rotation and viewpoint changes. Both of them can be
downloaded from [16, 17]. Figure 1 shows some example images of the two groups.
Specially, the images in both groups will also be synthetically transformed to simu-
late affine transformation.

The experiment for the proposed color constant descriptors considers the per-
formance under both synthetic transformation and real changes in illumination and
viewpoint. Recognition of a pattern is performed by means of a k-nearest-neighbor
(KNN) classification scheme based on feature vectors consisting of moment invari-
ants, the performance is assessed with reference to recognition ratio (RR).k means
the first k matches in the increasing sorted of matching distance values. If k is set
to 1, the image from first rank is selected as matching object; otherwise, the most
numerously matched object will be selected. In this paper, we make k to be 1, 3,
5, 7, respectively. We also compute the averaged RR over the performance of these
four different k values.

4.1 Robustness to Illumination Change

Here we test the image descriptors with respect to robustness to illumination color
variation. The performances of the proposed three descriptors are compared with
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Fig. 1. Examples from the image data sets (637 × 468 pixles). First line: examples from
group (A). Second line: examples from group (B).

other four kinds of different color constant descriptors [6, 7, 9], which are shown in
Equations (14)–(17). Histograms of the four descriptors are constructed to represent
an image. Each dimension of the 4 descriptors is divided into 16 bins. There
are 3 dimensions for P , 2 dimensions for m and φp, 1 dimension for φm. The
recognition performance is estimated by means of a leave-one-out procedure [12].
The Recognition Ratio (RR) of the proposed descriptors with different values of k
is shown in Table 1.

P = {p1, p2, p3} =
{

RX

R
,
GX

G
,
BX

B

}

(14)

m = {m1, m2} =
{

RXG−GXR

RG
,
GXB − BXG

BG

}

(15)

φp = {φ1

p, φ
2

p} = {arctan (p1/p2) , arctan (p2/p3)} (16)

φm = {arctan (m1/m2)} (17)

From the mean values of RR in Table 1 we can clearly see that, among these
descriptors, CJ performs best in group (A). Only φp and m outperform J and ∂J ;
but the histogram dimensions of φp and m are much higher than J and ∂J . In
group (B), all the three proposed descriptors outperform the other four descriptors,
and the RR of the proposed descriptors are much higher than others. Consequently,
the proposed descriptors show high performance and low dimension in both experi-
ments.

4.2 Robustness to Affine Transformation

In this experiment, we will test the robustness to geometric affine transformation,
which is usually encountered for real-world images. To simulate geometric affine
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Set Descriptor k = 1 k = 3 k = 5 k = 7 Dimension Mean

A

Existing

P 83.7% 65.1% 54.7% 48.8% 16× 16× 16 63.1%
φP 93.8% 92.7% 90.9% 88.0% 16× 16 91.4%
m 93.2% 91.3% 90.2% 87.9% 16× 16 90.6%
φm 83.1% 73.3% 72.1% 70.3% 16 74.7%

Proposed
J 94.2% 91.3% 85.5% 80.8% 13 87.9%
∂J 94.8% 91.3% 87.2% 87.2% 13 90.1%
CJ 95.9% 92.4% 89.5% 90.1% 26 92.0%

B

Existing

P 82.3% 74.5% 73.6% 71.4% 16× 16× 16 75.5%
φP 71.8% 56.4% 50.0% 45.9% 16× 16 56.0%
m 85.0% 79.5% 75.5% 73.6% 16× 16 78.4%
φm 74.5% 70.0% 70.9% 68.2% 16 70.9%

Proposed
J 81.8% 81.8% 78.2% 72.7% 13 78.6%
∂J 91.4% 86.4% 85.0% 84.1% 13 86.7%

CJ 93.2% 89.5% 87.7% 84.5% 26 88.8%

Table 1. Performance comparison of our proposed descriptors to other four descriptors in
terms of robustness to illumination color

 

Origin W=0.2 W=0.6 W=1.0

Fig. 2. Affine transformation examples with different w

transformation, each image pixel’s location (x, y) is changed into (x, y′), where y′ =
w × x + y; that is, the new vertical coordinate is acquired by shift w × x pixels
along vertical direction while the horizontal coordinate is kept untouched. The
scale factor w is chosen from 5 different values 0.2, 0.4, 0.6, 0.8, 1. Some transformed
example images are shown in Figure 2. For each scale factor, the transformed images
compose the training set, while the original images are used as test ones. That is,
we will use the transformed images to recognize the original ones based on the J, ∂J
and CJ descriptors. The changing performances of RR as the selection of different
values of k are shown in Figures 3 and 4. From these two charts, we can draw
a conclusion that RR performance of the each descriptor has nearly no obvious
decrease with increase of w. The numeric details on affine transformation are shown
in Table 2. The maximum change range of J, ∂J and CJ is 2.4%, 4.0% and 3.5%,
respectively for image group (A) and 3.1%, 1.4% and 0.9%, respectively for image
group (B). So J, ∂J and CJ are all robust to affine transformation.
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Fig. 3. The object recognition ratio of image group (A) as a function of affine transforma-
tion

5 CONCLUSION

Object recognition is a fundamental task in computer vision and color can pro-
vide valuable clue for it. However, the color of objects will vary depending on the
illumination incident on them. To address this problem, a general color constant

Set Descriptor k = 1(%) k = 3(%) k = 5(%) k = 7(%) Max(%)

A
J [99.4, 100] [94.1, 96.5] [90.6, 91.3] [87.8, 87.8] 2.4
∂J [95.0, 98.2] [93.9, 96.5] [89.6, 91.8] [84.9, 88.9] 4.0
CJ [99.4, 100] [97.1, 98.8] [90.1, 93.6] [85.5, 87.7] 3.5

B
J [100, 100] [91.3, 92.2] [85.9, 89.0] [82.3, 85.4] 3.1
∂J [98.6, 100] [90.9, 92.2] [85.9, 87.3] [85.4, 86.8] 1.4
CJ [100, 100] [93.6, 94.0] [90.9, 91.8] [90.0, 90.4] 0.9

Table 2. Object recognition ratio change range. MAX means the maximal change among
defined range
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Fig. 4. The object recognition ratio of image group (B) as a function of affine transforma-
tion

description framework is given by introducing 3D moment invariants, from which
0-, 1- and even higher order descriptors can be obtained. All these descriptors can
characterize different order derivative images. By testing on two different image
sets, the proposed descriptors have shown the robustness to illumination color and
affine transformation. In addition, the 0-order and the combinational descriptor are
also robust to blur change. Furthermore, we can describe an image using not only
one of these descriptors but also the combination of them.
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