Computing and Informatics, Vol. 31, 2012, 759-778

DISTRIBUTED DETECTION OF DDOS ATTACKS
DURING THE INTERMEDIATE PHASE THROUGH
MOBILE AGENTS

Ugur AKYAZI

Turkish Air War College
Yenilevent, 34330, Istanbul, Turkey
e-mail: uakyazi99@yahoo.com

A. Sima UYAR

Computer Engineering Department
Istanbul Technical University
Maslak, 34469, Istanbul, Turkey
e-mail: etaner@itu.edu.tr

Communicated by Pattrick Brézillon

Abstract. A Distributed Denial of Service attack is a large-scale, coordinated at-
tack on the availability of services of a victim system, launched indirectly through
many compromised computers on the Internet. Intrusion detection systems are net-
work security tools that process local audit data or monitor network traffic to search
for specific patterns or certain deviations from expected behavior, which indicate
malicious activities against the protected network. In this study, we propose dis-
tributed intrusion detection methods to detect Distributed Denial of Service attacks
in a special dataset and test these methods in a simulated-real time environment, in
which the mobile agents are synchronized with the timestamp stated in the dataset.
All of our methods use the alarms generated by SNORT, a signature-based network
intrusion detection system. We use mobile agents in our methods on the Jade plat-
form in order to reduce network bandwidth usage and to decrease the dependency
on the central unit for a higher reliability. The methods are compared based on
reliability, network load and mean detection time values.

Keywords: Intrusion detection, DDoS, DARPA dataset, mobile agents

760 U. Akyazi, A.S. Uyar

1 INTRODUCTION

An intrusion detection system (IDS) is used to detect intrusions, which are the
actions that attempt to compromise the integrity, confidentiality or availability of
a resource [1]. Usually, an intruder first gains access to a single host by exploiting the
software flaws, then tries to break into other hosts in the network via the formerly
compromised host, like in the Denial of Service (DoS) attacks [2].

The objective of a DoS attack is to cause the target system to fail the services it
normally provides. In a Distributed Denial of Service (DDoS) attack, one target is
attacked simultaneously from a large number of sources. DDoS attacks often use the
computers that have been previously exploited, so that an outsider can use them to
launch an attack [3]. These zombie computers play their roles in the intermediate
phase of the attack.

In this paper, we propose distributed intrusion detection methods to detect
DDoS attacks in their intermediate phases on the MIT DARPA LLDOS 1.0 dataset.
We use mobile agents in all of the methods except the first one. All of these me-
thods use the alarms generated by SNORT, which is a signature-based network IDS.
We use a novel simulated-real time test environment in order to get more realistic
results.

The paper is organized as follows: Some background information about IDSs,
distributed attack types, mobile agents and datasets are given in Section 2 with
some related work. Section 3 gives detailed description of the method architec-
tures and test implementations of our study. Section 4 reports the experimental
evaluation of these IDS methods using the MIT DARPA dataset. Section 5 de-
scribes the conclusions reached after evaluating the methods and provides some
future work.

2 LITERATURE REVIEW
2.1 Background

2.1.1 Distributed Intrusion Detection Systems (DIDS)

A single activity, which is a part of an attack when considered with other host
activities, may look innocent when considered alone. Therefore, distributed IDS
systems correlate the intrusion data collected from several hosts in a network. Most
of the current distributed IDSs use a centralized controller component that performs
analysis of the information it receives from each monitored hosts and the network.
This causes an excessive load on the centralized controller and network [3, 4].

2.1.2 SNORT

SNORT is an open source, free Network IDS developed by Marty Roesch in 1990 [5].
It is a signature-based IDS that uses a combination of rules and preprocessors to

Distributed Detection of DDoS Attacks During the Intermediate Phase 761

analyze network traffic. It supports both header and payload inspection methods.
SNORT can be run in various modes from simply dumping sniffed traffic to the
screen, to the IDS mode which is mostly preferred [6]. It produces alarms using
misuse rules defined previously and has a language to define new rules. SNORT
uses binary tcpdump-formatted files or plain text files to capture network pack-
ets.

We chose SNORT as the signature-based IDS to generate the alarms in our
hosts as it is commonly used in academic research projects. SNORT, on its own,
was able to detect 27 of 201 attack instances in the 1999 DARPA IDS dataset, which
means 14 % true detection rate, in the study of [7] where PHAD [8] and NETAD [9]
IDSs are experimentally improved and added as a preprocessor to SNORT. In [10],
two open-source network intrusion detection systems (SNORT and Pakemon [11])
are combined with Cisco IOS Firewall [12] intrusion detection features to increase
detection of attacks. SNORT had 44 % true detection rate when tested on the
fourth week of the above stated dataset. Although it had low detection rates in
1999 DARPA IDS dataset experiments, it was able to detect the first three phases
of the DDoS attack of the 2000 DARPA LLDOS 1.0 dataset which we used in our
experiments. Since our methods give the necessary alarms to the security manager
after detection of the first three DDoS phases, SNORT is a useful misuse detection
tool for our study.

2.1.3 Distributed Denial of Service Attack (DDoS)

A DDoS attacker uses a large number of hosts to launch DoS attacks of SYN flood-
ing, UDP flooding or ICMP flooding against any target system. DDoS tools, like
TFN, Trinoo, Stacheldraht, and Mstream install daemon programs on all of the
compromised hosts which are controlled by a master program [2]. DDoS attacks
can cause serious damages to Internet services. Tools to gain root access to other
machines are freely available on the Internet [13].

DDoS defense systems can be placed at the victim, at the intermediate level
or at the source network [14]. Tt is very hard for victim systems to get rid of
DDoS attacks. The attack is launched from a group of “zombie” computers, whose
weak security systems allowed their abuse. These abused computer owners do not
invest in strengthening their security, because they do not directly experience risks
of the DDoS attacks and they expect the victims to take the necessary precautions.
According to Canadian laws, the intermediate users who do not take the necessary
precautions in these attacks are also accused of being guilty. It is possible that the
same approach may be adopted in other countries too [3].

2.1.4 Mobile Agents

An agent is an autonomous, reactive or proactive program that executes a task on
behalf of a user. A mobile agent has the capability of traveling through networks,
interacting with machines, collecting information and returning to its dispatcher

762 U. Akyazi, A.S. Uyar

after it finishes its tasks [16, 17]. Mobile agents are used in order to:

e reduce the network load,
e overcome network latency,
e execute asynchronously and autonomously,

e adapt to the environmental changes [16].

Mobile agents are also useful in moving the intrusion detection code to the
location of the data instead of moving the data between hosts for analysis [17].
Since mobile agents can execute their tasks even when they are disconnected from
their dispatchers, a failure of the controller unit of the mobile agents does not stop
the ongoing intrusion detection tasks. This makes the system more reliable [2].

We use JADE (Java Agent Development Environment) in our implementation.
JADE is a framework for the development and execution of peer-to-peer agent ap-
plications, which can also operate in a wireless environment [18]. Agents are located
in distributed containers which provide all of the services needed for hosting and
executing agents [19].

2.1.5 Datasets

Releasing intrusion detection evaluation data is a problem because of the privacy
concerns. To overcome this problem, Lincoln Laboratory (LL), under sponsorship
of Defense Advanced Research Projects Agency (DARPA), created the Intrusion
Detection Evaluation Dataset (IDEVAL) that serves as a benchmark [20].

In 1998, 1999 and 2000, they built a network to simulate an air force base.
They gathered tepdump, Sun Basic Security Module (BSM), process and file system
information after the background activities are produced with scripts, and attacks
are injected at well defined points. Figure 1 shows the 1999 evaluation test-bed
network. More than 200 instances of 58 different attacks were embedded in the test
data [21].

The first data set to be created for DARPA in 2000 is LLDOS 1.0 which includes
a DDoS attack. The basis of the attack is that an attacker seeks to show his/her
talent by using a scripted attack to break into a variety of hosts around the Internet,
install the components necessary to run a Distributed Denial of Service, and then
launch a DDoS at a US government site. In this scenario, the attacker uses the
Solaris sadmind exploit to gain root access to three Solaris hosts of the simulated
network and the Mstream DDoS tool to launch the attack. An Mstream “server” is
installed on each of the three abused intermediate hosts, while an Mstream “master”,
which controls the “servers” is installed on one of these hosts. The DDoS attack is
started by these “servers” simultaneously [22].

The attack scenario has five phases:

1. IPsweep of the network,

2. probe of active hosts to look for the sadmind tool running on Solaris hosts,

Distributed Detection of DDoS Attacks During the Intermediate Phase 763

3. break-ins via the sadmind exploits,
4. installation of the trojan mstream DDoS software on three hosts,

5. launching the DDoS attack.

Cisco
INSIDE OUTSIDE
HUB HUB
| i
= I ml
il SUNOS SOLARIS SOLARIS SOLARIS
SNIFFER ALLEXTERNAL SNIFFER

LINUX = — WEB SITES
TRAFFIC
GENERATOR TRAFFIC
GENERATOR

WINDOWS NT m *

LINUX WINDOWS NT LINUX SCAN LINUX ATTACK WINDOWS NT
ATTACKER ATTACKER GENERATOR GENERATOR ATTACKER

Fig. 1. Block diagram of 1999 test-bed [23]

2.2 Related Work

Intrusion detection using mobile agents is researched in several studies. In TADIDS
(Independent Agents-based Distributed Intrusion Detection System) [24], static
agents on the same host are in a hierarchical organization, in which the manager is
at the higher level, and the detector is at the lower level. The cooperating entities
among different machines are in the equity position, and there is no control center
among these entities. Lack of a control center seems good but it is not explained
how the system coordinates while detecting distributed attacks.

The IDS described in [25] is composed of several layers of agents. Each layer
sends information to the layer above it. The mobile agents are not attack specific,
and do not perform any data analysis. Analysis of data is carried out by separate
decision making agents.

Manager component of [26] dispatches mobile agents which are not attack spe-
cific, and analyzes the gathered intrusion data. While a static agent is used for
monitoring the hosts, the patrolling agents just collect intrusion related data from
the monitored hosts. They do not correlate these data and make a decision. The
GYPSY mobile agent platform [27] is used in this work.

764 U. Akyazi, A.S. Uyar

The Intrusion Detection Agent (IDA) system [28] consists of two main compo-
nents: sensors running in every monitored host that report Marks Left by Suspected
Intruder (MLSI) and a central manager which is responsible for dispatching tracing
agents to the host whose sensor reports an MLSI, and analyzing the information
gathered by these agents.

In [17] a peer-to-peer intrusion detection system that has no central coordinator
is proposed. A virtual neighborhood is created where neighbors look out for each
other. Each site periodically sends mobile agents to visit and control its neighbors
and report back. When inconsistent or anomalous behavior is observed, the observer
neighbor initiates a voting process to take action against the compromised site.

IDReAM [15] combines mobile agents with nature-inspired learning systems.
The Intrusion Detection System uses the artificial immune system approach while
the Intrusion Response System uses the mechanism of ant colonies. Every dis-
patched mobile agent walks randomly between the different nodes and the correla-
tion between the collected information is established by the help of deposits made
by previous mobile agents.

DIDMA [2] uses mobile agents which perform the task of aggregation and cor-
relation of the intrusion related data that it receives from static agents. DIDMA is
the basic architecture for the second method proposed in our study. Mobile agents
reduce network bandwidth usage by moving data analysis computation to the loca-
tion of the intrusion data. The Voyager mobile agent platform [29] is used in this
work.

In [17], there is no central coordinator responsible for dispatching and controlling
the mobile agents; however, at each site the analysis of the gathered information is
accomplished by a static agent that coordinates the mobile agents and the different
reports received previously. In [28], mobile agents autonomously migrate to target
systems to collect only the information related to intrusions, eliminating the need to
transfer useless system logs to the analyzer server, but the decision about a potential
intrusion is centralized which constitutes a major weakness. The tracing mobile
agent migrates to another site to trace the path of the intrusion and identify its
point of origin; however, this will only be useful if the intrusion to a host comes from
another host in the network as a chain, which is not always true. In IDReAM [15],
every dispatched mobile agent moves randomly between the hosts and the correlation
between the collected information is done using the deposits made by previous mobile
agents in a distributed way. The travel destination of the mobile agents are chosen
dynamically in every host. However, there is not sufficient information in the paper
about when and how many mobile agents are being created and who the creators
are. The mobile agents of [25] are not attack specific, and do not perform any
data analysis. Analysis of data is carried out by separate decision making agents.
Patrolling agents of [26] just collect intrusion related data from the monitored hosts,
while mobile agents used in our work aggregate and correlate the data received from
previous hosts. In DIDMA [2], mobile agents are created centrally and take the
route specified in their lists. In three of our methods mobile agents are dispatched
distributedly, and travel all of the hosts if necessary. Both DIDMA and our system

Distributed Detection of DDoS Attacks During the Intermediate Phase 765

complete the currently running intrusion detection tasks even in case of failure of the
mobile agent dispatchers. A static agent of DIDMA generates an intrusion event
on the detection of any DoS activity such as SYN, UDP or ICMP flooding from
its host; whereas, intrusion events in our work are generated before a DoS activity
happens in a host. The help of SNORT alarms is another main difference of our
study from others.

3 METHODOLOGY

Six different distributed intrusion detection methods are proposed and tested in or-
der to detect DDoS attacks of the MIT DARPA LLDOS 1.0 dataset through making
some changes on the architecture of DIDMA [2] given in Figure 2. Mobile agents are
used in all of these signature-based network IDS methods except the first one. The
first four methods were initially proposed in our previous study [30] and very pre-
liminary results were obtained. In our current study, based on our observations and
the shortcomings of the previous methods, we propose two new methods, introduce
a more realistic test environment and perform a detailed experimental analysis. The
components of our IDS methods are as follows:

e MainAgent,

e Static Agents,

e Mobile Agents (MA),
e AlarmAgent.

Each host in the local network has a Static Agent which always monitors the
host and informs the MainAgent when it detects suspicious events on its host. The
MainAgent and the AlarmAgent are placed on separate protected locations in the
network; so that, if the host of the MainAgent becomes unavailable due to a failure,
the AlarmAgent can continue to send messages to the IDS console about intrusion
threats to inform the security manager. MainAgent creates attack-specific Mobile
Agents which travel through the network to gather data about suspicious events.
At the end, these mobile agents decide whether there is an intrusion or not. This
detection process shows some variations in each of our methods, as explained below
in detail.

3.1 Method-1

The MainAgent does all the work alone in this mostly used and criticized centralized
system. The Mobile Agent and the AlarmAgent are not used. The Static Agents
on the hosts send intrusion-suspect messages to the MainAgent. These messages
contain information about the suspicious event. If there are at least two intrusion
messages of the same type, having the same attacker IP but sent by different hosts,
in a given time limit, the MainAgent sends a message to the Security Console about
the related distributed intrusion and saves the alarm message in a log file.

766 U. Akyazi, A.S. Uyar

Local Network

IDS Console MainContainer
AlarmAgent MainAgent MALI
T
|
A I
]
|
|
I
MAl |g---1------—-—-1-———- MA1
SA2 SAl
HOST2 HOST1

Fig. 2. General system architecture

The overall system work-time will be short due to the MainAgent doing all
the work centrally. On the other hand, the intrusion-suspect messages sent to the
central unit need to contain a large amount of data, since the responsibility of gath-
ering data about suspicious events, analyzing them and making a decision about
the existence of a distributed intrusion is on the MainAgent. The message data
we used in our tests for rule-based detection is just the IP address of attacker;
however this data may have to contain affected system files, registry records, net-
work logs and even more for real anomaly-based detection systems. This will cause
a higher network traffic load. In addition, the system will fail to work in case the
MainAgent becomes unavailable either voluntarily or as a result of an attack from
adversaries.

3.2 Method-2

In this method, when two messages including an attacker with the same IP number
are sent from different hosts in a given time limit, the MainAgent creates a Mobile
Agent and sends it to the two hosts which sent the messages. This Mobile Agent
inspects the records of the related intrusion on each host it is sent to and gets the
required information like the IP number of the attacker. In the end, it determines
whether there is a distributed intrusion being done from the same source or not and

Distributed Detection of DDoS Attacks During the Intermediate Phase 767

then it terminates itself. If there is an intrusion, it sends a message to the Alarm-
Agent before terminating, and the AlarmAgent displays the intrusion information
on the console and saves it in a log file.

The structure resembles the one in the DIDMA [3] study, since it is taken
as an example base model. In DIDMA, Static Agents report the SYN or UDP
Floods originating from their hosts to the Mobile Agent Dispatcher while detect-
ing a DDoS attack. The Mobile Agent Dispatcher creates and sends the Mobile
Agent to the reporter hosts to determine whether the victim IP address is same
or not in order to make the distributed attack decision. The DDoS dataset and
detection phases used in our method is much more detailed than the ones used
in DIDMA. The attack is detected in early stages so that the security manager
will have the chance of preventing it from being completed. Jade is used in this
study instead of DIDMA’s Voyager mobile agent platform. One other difference is
the help of SNORT in forming the intrusion messages of Static Agents as stated
before.

In this method, data about the suspicious events is not moved to the central
unit as in Method_1; the Mobile Agents visit the hosts and inspect the events in
their places, making the required analyses and even the decision of whether there
is a distributed intrusion in the system or not. This causes a much lower network
load than the first method. Furthermore, the system will still work fine in case of
the MainAgent being made unavailable after creating the Mobile Agent.

3.3 Method-3

In this method, unlike in Method 2, the MainAgent does not wait for two messages
from the hosts to create the Mobile Agents. A Mobile Agent is created as soon
as an intrusion-suspect message for an intrusion type different than those received
before comes from a different host in a given time limit. The Mobile Agent visits
the host which sent the message first and learns the IP number of the attacker.
Later, it visits the other hosts in the network in a random order. While looking in
the host records, if it finds out that there is another recording of the same attack
from the same IP numbered attacker in the same time limit, it determines that
there is a distributed intrusion from that attacker. It then sends a message to the
AlarmAgent about this situation, which displays the intrusion information on the
console and records it in a log file. Otherwise, the Mobile Agent visits all the hosts
in the network and terminates itself.

The system will still work fine in case of the MainAgent being made unavailable
after accepting the first intrusion-suspect message or in case of the second mes-
sage that is needed to create the Mobile Agent of Method 2 is unable to reach the
MainAgent. In the worst case, the overall system working time will be long, since
the Mobile Agents may need to visit all of the hosts in the network when the other
hosts exposed to the distributed intrusion may be close to the end of the random
visiting order of the Mobile Agents.

768 U. Akyazi, A.S. Uyar
3.4 Method-4

In this method, unlike in the previous ones, the Mobile Agents are created by the
Static Agents of each host instead of the MainAgent. In order to prevent redundancy,
when the StaticAgent on a host detects a suspicious event, it first asks the MainAgent
if a Mobile Agent for the same type of intrusion is already created within the same
time period. If there are no Mobile Agents of the same type already created in the
same timeframe or if there is no reply from the MainAgent, the Static Agent creates
the related Mobile Agent and sends it on. Again the Mobile Agent travels in the
network in a random order as in Method_3.

In this semi-distributed method, the system will still work fine in case of the
MainAgent being made unavailable any time. But, this method will also have the
disadvantage of having a long work-time as Method 3.

3.5 Method-5

In this method, unlike in Method_4, the StaticAgent of the host which detects an
intrusion-suspect, dispatches a Mobile Agent in order to investigate the related in-
trusion on other hosts, without any coordination with the MainAgent. This method
is fully-distributed since the MainAgent is never used. MA makes the necessary
questioning by visiting all other hosts in a random order as in Method_4. It stops
its scanning when it finds a host which holds an intrusion-suspect matching the same
criteria; causes other MAs, which investigate the same intrusion-suspect, to halt via
a broadcast message and terminates itself after sending an information message to
the Alarm Agent. Otherwise, it visits all of the hosts for questioning and terminates
itself in the end.

The communication with the MainAgent while creating a MA in Method_4 is
removed in this method at the expense of increasing more MA load on the network.
This allows the distributed intrusion to be detected/prevented earlier through creat-
ing the MA instantly without coordination and the system becomes fully-distributed
without a central coordinator.

3.6 Method-6

In this method, a system with high reliability and short detection time is created
by combining the short mean detection time advantage of Method 2 with the fully-
distributed structure of Method 5. The system works in mode-1 (Method 2) nor-
mally but shifts to mode-2 (Method_5) when the central unit becomes unavailable.
This allows the intrusions to be detected even in the case of a MainAgent fail-
ure.

In mode-1, the MainAgent sends a message which contains its availability, as
a reply to each incoming intrusion-suspect message from the Static Agents of the
hosts. If this reply message does not reach the related Static Agent in two seconds,
the system automatically shifts to mode-2 and continues to work as Method_5. This

Distributed Detection of DDoS Attacks During the Intermediate Phase 769

means that the MainAgent is not available any more and the system needs to work
fully-distributedly. At the same time, a message is sent to other Static Agents
in order to warn them about shifting to mode-2. A Static Agent which gets this
warning shifts to mode-2, if it already has not shifted automatically.

4 EXPERIMENTAL RESULTS
4.1 Dataset Used in the Experiments

As stated before, we used the Lincoln Laboratory Scenario (DDoS) 1.0 of DARPA
Intrusion Detection Evaluation in our experiments [22]. These data files were col-
lected over a span of approximately 3 hours on Tuesday, 7 March 2000, from 9:25
AM to 12:35 PM, Eastern Standard Time. The detailed descriptions of the five
phases of the attack scenario are:

Phase 1: The attacker applies an [Psweep attack to multiple class C subnets (e.g.,
172.16.115.0/24), which contain twenty hosts in total, on the air force base by
sending ICMP echo-requests and listening for ICMP echo-replies to determine
the active hosts.

Phase 2: Each active host is probed using the “ping” option of the sadmind exploit
program to determine whether they are running the sadmind remote adminis-
tration tool.

Phase 3: The active hosts running the sadmind tool are attacked in order to get
root access and break-in. After these attacks, the attacker attempts a login via
telnet to test whether the break-ins were successful or not.

Phase 4: Up to this phase, the attacker successfully obtains the root access of
three hosts whose names are: mill (172.16.115.20), pascal (172.16.112.50), and
locke (172.16.112.10). After the attacker sets up these hosts as “servers” and
one of them as “master”, they perform the required messaging between them-
selves.

Phase 5: The DDoS attack is launched in this final phase. A DDoS attack of
5 second duration against the victim with IP number of 131.84.1.31 is started
simultaneously by the “servers” with the “mstream 131.84.1.31 5” command of
the attacker [22].

We downloaded the offline data of the inside sensor as a tepdump file. This
inside sniffer is placed just behind a firewall, so that it gathers all network traffic
in one point before it is sent to other inside hosts or the outside. This one-file
tcpdump data is resolved into twenty different “alarm.ids” files which belong to
each inside host by using SNORT. This way, we obtained SNORT alarms of each
potential intrusion event of our dataset. The intrusion types of the DDoS attack
phases written in the SNORT alarms are as follows:

770 U. Akyazi, A.S. Uyar

e Phase 1: ICMP PING
Phase 2: RPC portmap sadmind request UDP, RPC sadmind UDP Ping

e Phase 3: RPC sadmind query with root credentials attempt UDP, RPC sadmind
UDP NETMGT PROC _SERVICE CLIENT DOMAIN overflow attack

Phase 4: RSERVICES rsh root
e Phase 5: telnet to master (in order to start DDoS).

Number of Time when Time when Time when
the first the second
Attack hosts A . the last host
Attack names host is host is .
phases exposed to is exposed to
this attack exposed to exposed to this attack
this attack this attack
1 ICMP Ping 20 17:51:36.14 17:51:36.52 17:52:00.82
RPC portmap . . .

2a sadmind request UDP 11 18:08:07.35 18:08:07.50 18:34:36.43
2b RPC Sa‘;ﬁig‘d UbP 3 18:08:07.36 18:15:10.03 18:15:10.10

RPC portmap query
3a with root credentials 3 18:33:10.62 18:34:36.45 18:34:49.00

attempt

RPC sadmind UDP

NETMGT PROC
3b SERVICE CLIENT 3 18:33:10.62 18:34:36.45 18:34:49.00

DOMAIN overflow

attack
MIN. ATTACK DETECTION TIME = 42 MIN 59.93 SEC = 2579 930 MILLISECONDS

4 | RSERVICES rsh root | ‘ 18:50:02 ‘ [18:50:38

Table 1. Execution times of attack phases

Execution times of attack phases (Turkish local time zone) and the number of
hosts exposed to these attacks are given in detail in Table 1. To detect the presence
of a distributed attack, we aim to detect the first three phases of this scenario and
inform the security manager before the last two phases occur. In this case, at least
42 minutes and 59.93 seconds have to pass after the first host is exposed to the first
attack phase, to be able to decide about the presence of a DDoS attack. This value
is obtained by subtracting “the time when the 1% host exposed to the 1%t phase”
from “the time when the 2" host exposed to the 3™ phase”.

4.2 Test Designs

The tests are implemented on a Pentium M 1.6 GHz notebook computer, which
runs on Windows XP SP2 operating system. Twenty-two Jade containers of Static
Agents, the MainAgent and the AlarmAgent are created on separate DOS Command
Prompts in one computer. By using this simulated setup, we made sure that there
is no outside network traffic which would affect our measurements.

For an intrusion to be distributed, it has to be done on several hosts from the
same source or from a group of organized sources working together in a limited time
period. Therefore, in this study, two “intrusion-suspected” messages having the

Distributed Detection of DDoS Attacks During the Intermediate Phase 771

above stated properties are considered sufficient for the intrusion being distributed.
The time-out value for the distributed intrusions is chosen to be one hour as an ave-
rage time period. This type of intrusions may even last a few seconds or a day.

In our former study [30] tests, it was assumed that the records of the attacks
detected by SNORT were recorded on the related hosts in advance, so that the
timestamps stated in the dataset were not taken into account. MAs continued their
search without synchronizing with these timestamps. It is apparent that measure-
ments in these conditions are not realistic. Instead of that, a technique is imple-
mented in which the starting time of the tests is synchronized with the starting time
of dataset traffic and all of the static/mobile agents consider the timestamp infor-
mation of the attacks while analyzing the records on the hosts. In this technique,
agents compare the timestamp of the recorded attack with its own timer while scan-
ning the logs and move on to the next host without making any process on that
record and the following ones if the attack has not been executed yet. Therefore,
attacks are able to be detected at their real occurring times and are reported to the
related units. Also, allowing the MAs to travel for one hour in the network becomes
more meaningful in this scenario. Tests are performed in a one-hour period, since
the DDoS attack phases occur in less than a one-hour period, although the dataset
spans approximately three hours.

In two of 20 test runs (10 %) of Method_4 and Method_6, the system is made
to work in mode-2 because of a MainAgent failure. Thus, we were able to get the
detection time results of these two methods when it worked in fully-distributed mode
for 10 % of the time.

4.3 Results

Detection time results taken over twenty runs are shown in Figure 3. It can be seen
that the mean intrusion detection times of the methods are in the [+1 375, —359] ms
range of the minimum detection time of 42 min 59.93sec (2579930 ms). When
mean detection times are evaluated with their standard deviations, it can be seen
that methods do not differ so much in their intrusion detection times and have close
values to the minimum intrusion detection time.

MAs of the last four methods in the offline tests [30] were scanning entirely,
from beginning to end, the intrusion records of the “alarm.ids” files on the host
that they visit, comparing the scanned record information with “intrusion_type and
source_ip” data of the intrusion that caused their creation. A more effective com-
parison method is applied in the simulated-real time tests. In this approach, the
test time is compared with the “intrusion_time” data of the scanned “alarm.ids” file,
and the file is left without examining the current record and the following ones if
the related attack has not occurred yet. Therefore, all of the records up to end of
the file do not have to be examined unnecessarily.

In Table 2, network load measures of each method and their ranks according to
these measures are given. Network load is created by the messages sent between
the hosts and the Mobile Agents traveling in the network. A message is represented

772 U. Akyazi, A.S. Uyar

Mean time (milliseconds)+ Standard Deviations
2590000

2587500

2585000

2582500

2580000 2 2 5 T
2577500 - !
2575000 -

2572500 -

2570000 -

Method_1 Method _2 Method _3 Method _4 Method _5 Method _6

Fig. 3. Detection time results of simulated-real time tests

in the table as Mes3_SAtoMainA where this message is sent from Static Agents
to MainAgent in Method_3 or Mes5_MAtoALL where this message is sent from
Mobile Agents to all of the hosts in Method_5. Mobile Agents of the methods are
represented as MA 4. Method 2 causes 1375.37 KB network load as the sum of
236 Mes2_SAtoMainA messages each of which have 3250 bit size, and 10 MA 2
mobile agents each of which have 1050000 bit size. The sizes of the messages and
Mobile Agents which are given in parentheses change with the loads they carry. The
message sizes are small in our tests since they include less but enough information
about the intrusion-suspects.

In 10 % of the tests, MainAgent of method 4 and method 6 was made to fail and
the system worked without MainAgent. The number of messages and Mobile Agents
belonging to a method is stated in the column of that method where the total size
is given in the end. Ranks of the methods are directly proportional to their network
load sizes since the best method should have the least network load. Method_1 is
not classified in this and following rankings because of its full dependency to the
central unit, which is out of the scope of our study.

As stated before, MainAgent of method_3 needs one intrusion-suspect message
to create a Mobile Agent while MainAgent of method 2 needs two messages. Mobile
Agents of these two methods will work independently after being created. Mobile
Agents of the last three methods work independently from the MainAgent in the
case of its failure anytime. These “independence from the central unit” cases can be
seen in Table 3, where the value “1” means that the system in the method still can
work in the failure of the MainAgent in stated conditions. Ranks of the methods
are inversely proportional to the sum values which are calculated according to the
“sum; = value;; + valuess + value;s” formula in which “” represents the method
number, since the best method should be independent in more cases.

Distributed Detection of DDoS Attacks During the Intermediate Phase 773

Method_6
(10 fail)

Method_4

(10 fail) Method_5

Method-1 Method_2 Method-3

Mesl_SAtoMainA
(3080 bit)
Mes2_SAtoMainA
(3250 bit)
Mes3_SAtoMainA
(3250 bit)
Mes4_SAtoMainA B

(3080 bit)
Mes4_-MainAtoSA B
(850 bit)
Mes5_-MAtoALL
(490 bit)
Mes6_SAtoMainA 215
(3250 bit)
Mes6_MainAtoSA
(1150 bit)
Mes6_MAtoALL 23

(490 bit) ’
Mes6_SAtoALL 9
(550 bit)
MA_2
(1050000 bit)
MA_3
(1500000 bit)
MA_4
(750 000 bit)
MA_5 9
(750 000 bit)
MA_6 14
(1020000 bit)
TOTAL (KB) 88.73 1375.37
Not

RANKS classified ! 4 2

236

236

236

210

212

10

16

18

4773.3 1888.12

3

3023.32 1674.19

ot

Table 2. Network load measures

In simulated-real time test results of this study, Method_6 has the disadvantage
of more network load relative to Method 4, because the MainAgent of Method_6 has
to send a reply message to each incoming message in order to control the mode-1 to

mode-2 switches.

MainAgent MainAgent
becomes becomes
MainAgent unavailable after unavailable after
beco.mes ac.ceptm.g one ac?eptm.g two Sum Ranks
unavailable intrusion- intrusion-
anytime suspect message suspect message
and creating a and creating a
Mobile Agent Mobile Agent
Method_1 0 0 0 0 Not classified
Method_2 0 0 1 1 3
Method_3 0 1 1 2 2
Method 4 1 1 1 3 1
Method_5 1 1 1 3 1
Method_6 1 1 1 3 1

Table 3. Independence from the central unit

774 U. Akyazi, A.S. Uyar

3
“Network load” Independence Normalized
from the central Mean of ranks
ranks i sy ranks
unit” ranks

Method 2 1 3 2 2
Method_3 4 2 3
Method_4 2 1 1.5 1
Method_5 5 1 3 3
Method_6 3 1 2 2

Table 4. Ranks of the methods of simulated-real time tests

The overall ranks of the methods according to the two criteria are given in
Table 4. “Intrusion detection time” is not used as the third criterion since all of
the methods have similar values. Ranks are normalized after their mean values are
calculated. According to these ranks, Method_4 turns out to be the best one.

5 CONCLUSION

We designed and tested six distributed intrusion detection methods to detect DDoS
attacks in the MIT DARPA LLDOS 1.0 dataset, considering the timestamp informa-
tion of attacks in a simulated-real time test environment. We used mobile agents in
all of the methods, except the first one, which are all signature-based network IDS.
In Method_1, there is a centralized DIDS without mobile agents; the security ma-
nager is informed of a distributed intrusion in case of getting two intrusion-suspect
messages of the same type and same attacker IP from different hosts in one hour.
Mobile Agents, which are created by the MainAgent under suitable conditions and
which visit only the two listed hosts to inspect related data in their places, give the
distributed intrusion decision in Method_2. In Method_3, the MainAgent does not
wait for two messages from the hosts for creating the Mobile Agent. In Method_4,
Mobile Agents are not created by the central unit, but by the Static Agents on the
hosts through coordination with the central unit. In Method 5, Mobile Agents are
dispatched by the StaticAgent of the hosts, which detect intrusion-suspect without
coordinating with the MainAgent and other hosts. This method is fully-distributed,
since the MainAgent is never used. The Mobile Agent travels through the whole
network in a random order to make the distributed intrusion decision. In Method_6,
a system with high reliability and short detection time is created by combining the
short mean detection time advantage of Method_2 with the fully-distributed struc-
ture of Method_5. This system works in mode-1(Method_2) normally but shifts to
mode-2 (Method_5) when the central unit becomes unavailable.

The objective of the proposed methods is alerting a security manager to take
necessary precautions before the last two phases of a DDoS attack can be completed,
by detecting the first three phases quickly and correctly. Mean detection times,
network loads and reliability properties of each method are compared over twenty
simulation runs of the system. It is observed that usage of mobile agents increases
the network load, but distributed creation of these mobile agents also increases the
independency of the system from the central unit. Messages have smaller sizes

Distributed Detection of DDoS Attacks During the Intermediate Phase 775

than mobile agents in our current study; however this may be the opposite in an
anomaly-based IDS. Method 4 is determined as the best method because of its full-
independence from the central unit and its low network load. All of the methods
have too close “intrusion detection time” values, so it is not used as a third criterion.

In most of the studies that we cited in the beginning, mobile agents are just used
to collect information from the hosts, but the decision about potential intrusion is
centralized which constitutes a major weakness. Even in DIDMA [2] which makes
the analysis distributedly, mobile agents are created centrally and take the route
specified in their lists. In the methods that we propose in this study, mobile agents
are created distributedly, move through all of the nodes if necessary, gather the
related information, correlate it and make the decision autonomously. The mobile
agents can still do their job even in the failure of their dispatchers which makes our
system more reliable. Although there are studies about “Distributed Detection of
DDoS Attacks” or “Distributed Detection of the Intrusions using Mobile Agents”,
this is the only study that we know, trying to make the detection of DDoS attacks
during the Intermediate Phase. In our work, intrusion alarms are generated before
a DoS activity happens in a host that belongs to this phase.

In order to detect DDoS attacks of various types, under various circumstances,
signature-based and anomaly-based, network-based and host-based DIDS should
be hybridized. We are currently working on developing adaptive and intelligent
anomaly-based distributed intrusion detection methods which adapt themselves to
new types of attacks to be used with SNORT. Security of the agents and messages
should also be considered in future studies.

REFERENCES

[1] ABRAHAM, A.—GROSAN, C.—CHEN, Y.: Cyber Security and the Evolution of
Intrusion Detection Systems. Journal of Educational Technology, Special Issue in
Knowledge Management, ISSN 0973-0559, I-Manager Publications, 2005.

[2] KANNADIGA, P.—ZULKERNINE, M.: DIDMA A Distributed Intrusion Detection
System Using Mobile Agents. Proceeding of the ACIS 6'" International Confer-
ence on Software Engineering, Networking and Parallel/Distributed Computing
(SNPD/SAWN), 2005, pp. 238-245.

[3] CHANDLER, J. A.: Security in Cyberspace Combatting Distributed Denial of Service
Attack. University of Ottawa Law & Technology Journal, Vol. 1, 2003-2004, p. 231.

[4] KrRUEGEL, C.—TotH, T.: Distributed Pattern Detection for Intrusion Detection.
Proceedings of Network and Distributed System Security Symposium Conference
(NDSS) 2002.

[5] SNORT — The de facto standard for intrusion detection/prevention. http://www.
snort.org, accessed in 2008.

[6] NORTHCUTT, S.—NoVAK, J.: Network Intrusion Detection: An Analyst’s Hand-
book. USA, New Riders Publishing 2002, pp. 235-240.

776

7]

8]

[9]

(1]

(12]

(13]

(21]

22]

U. Akyazi, A.S. Uyar

AYDIN, M. A.—Zamm, A. H—CEvLAN, K. G.: A Hybrid Intrusion Detection Sys-
tem Design for Computer Network Security. Computers and Electrical Eng. Journal,
Vol. 35, 2009, No. 3, pp. 517-526.

MAaHONEY, M.V.—CHAN, P.K.: PHAD: Packet Header Anomaly Detection for
Identifying Hostile Network Traffc. Florida Tech., Technical Report, 2001-04, 2001.

MAHONEY, M. V.: Network Traffic Anomaly Detection Based on Packet Bytes. ACM
Symposium on Applied Computing (SAC), 2003.

Kavacik, G.H.—ZiNCIR-HEYwooD, A.N.: Using Intrusion Detection Systems
with a Firewall: Evaluation on DARPA 99 Dataset. NIMS Technical Report, 062003,
2003.

TAKEDA, K.—TAKEFUJI, Y.: Pakemon — A Rule Based Network Intrusion Detection
System. Int. Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5,
2001, No. 4, pp. 240-246.

Cisco 10S Firewall Intrusion Detection System. http://www.cisco.com/en/US/
docs/ios/12_0t/12_0t5/feature/guide/ios_ids.html.

Lin, S.: A Survey on Solutions to Distributed Denial of Service Attacks. Research
Profficiency Examination Report, TR-201, Experimental Computer System Lab,
SUNY at Stony Brook, September 2006.

PENG, T.—LECKIE, C.—RAMAMOHANARAO, K.: Detecting Distributed Denial of
Service Attacks Using Source IP Address Monitoring. Draft, November 2002.

Foukia, N.: IDReAM: Intrusion Detection and Response Executed with Agent Mo-
bility Architecture and Implementation. Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS’05), 2005,
pp- 264-270.

Xu, C.-Z.: Naplet: A Flexible Mobile Agent Framework for Network-Centric Ap-
plications. Proceedings of the 16" International Parallel and Distributed Processing
Symposium (IPDPS 2002), pp. 219-222.

RAMACHANDRAN, G.—HART, D.: A P2P Intrusion Detection System Based on Mo-
bile Agents. Proceedings of the 42" Annual Southeast Regional Conference (ACM-
SE 42), 2004, pp. 185-190.

BELLIFEMINE, F.—CAIRE, G.—Pocc1, A.—Rimassa, G.: JADE — A White Pa-
per — EXP in Search of Innovation — Special Issue on JADE. TILAB Journal 2003.

BELLIFEMINE, F.—CAIRE, G.—GREENWOOD, D.: Developing Multi Agent Systems
with JADE. John Wiley and Sons Ltd. 2007, pp. 1-34.

MAHONEY, M. V.—CHAN, P.K.: An Analysis of the 1999 DARPA /Lincoln Labo-
ratory Evaluation Data for Network Anomaly Detection. Proceedings of Recent Ad-
vances in Intrusion Detection, 6" International Symposium (RATD 2003), Pittsburgh,
PA, USA, 8-10 September 2003, pp. 220-239.

BRUGGER, S. T.—CHow, J.: An Assessment of the DARPA IDS Evaluation Dataset
Using SNORT. UC Davis Technical Report CSE-2007-1, Davis, CA, 6 January 2007.

MIT Lincoln Laboratory, Information Systems Technology, http://www.1ll.mit.
edu/mission/communications/ist/corpora/ideval/data/2000/LLS_DD0OS_1.0.
html, accessed in 2009.

Distributed Detection of DDoS Attacks During the Intermediate Phase 7

(23]

24]

(25]

(26]

27]

29]

(30]

KorBa, J.: Windows NT Attacks for the Evaluation of Intrusion Detection Systems.
Master of Engineering thesis, MIT, USA, May 22, 2000.

Du, Y.—WaNG, H.-Q.—PANG, Y.-G.: TADIDS — Design of a Distributed Intru-
sion Detection System Based on Independent Agents. Proceedings of International
Conference on Intelligent Sensing and Information Processing, 2004, pp. 254-257.
BERNARDES, M. Y.—MOREIRA, E. DOS S.: Implementation of an Intrusion Detec-
tion System Based on Mobile Agents. Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed Systems (PDSE 2000), pp. 158-164.
SHAO-CHUN, Z.—QINGFENG, S.—XI1A0-CHUN, C.—YAN, W.: Safe Mobile Agent
System For Distributed Intrusion Detection. Proceedings of The Second International
Conference on Machine Learning and Cybernetics, November 2003, pp. 2009-2014.
JAAYERI, M.—LUGMAYR, W.: Gypsy: A Component-Based Mobile Agent System.
Proceedings of the Eighth Euromicro Workshop on Parallel and Distributed Process-
ing (EURO-PDP 2000), Rhodos, Greece, January 19-21, 2000.

AsAkA, M.—OxAzAwA, S.—TagucHl, A.—GoTo, S.: A Method of Tracing In-
truders by Use of Mobile Agents. Proceedings of the 9™ Annual Conference of the
Internet Society (INET’99), June 1999.

Recursion Software, Products, Voyager Edge, Solutions for Intelligent Mobile Ap-
plications, Rapid Development, and Social Networking. http://www.recursionsw.
com/Products/voyager.html, accessed in 2008.

Axvyazi, U.—UvAr, A.S. Distributed Intrusion Detection Using Mo-
bile Agents Against DDos Attacks. 23" International Symposium on Com-
puter and Information Sciences (ISCIS), IEEE 2008, ISBN: 978-1-4244-2880-9,
DOI:10.1109/ISCIS.2008.4717920.

Ugur AKYAZI received his B. Sc. degree in 1999 from Computer
Engineering Department of Turkish Air Force Academy, and his
M. Sc. degree in 2002 from Systems Engineering program of Air
Force Institute of Technology (USA). He then received his Ph. D.
degree in 2011 from Computer Engineering Program of Istanbul
Technical University. He worked as a teaching assistant in Com-
puter Engineering Department of Turkish Air Force Academy
between 2002 and 2011. He is still a student of Turkish Air War
College. His research interests include nature-inspired comput-
ing and evolutionary algorithms especially in computer network
security.

778 U. Akyazi, A.S. Uyar

A. Sima UYAR received her B. Sc. degree in 1990 from the Con-
trol and Computer Engineering Department of Istanbul Tech-
nical University. She then received her M.Sc. (in 1992) and
Ph.D. (in 2002) degrees from the Control and Computer Engi-
neering program of the Institute of Science and Technology in the
same university. She worked as a teaching and research assistant
in the Computer Engineering Department of Istanbul Technical
University between 1990 and 2003. She is an Assistant Profes-
sor in the same department since 2003. Her research interests
include nature-inspired computing and evolutionary algorithms
especially in dynamic/noisy/uncertain environments and applications in data clustering,

learning and combinatorial optimization.

