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Abstract. The design of enhanced fusion devices constitutes a key element for the
development of fusion as a commercial source of energy. Stellarator optimization
presents high computational requirements because of the complexity of the numeri-
cal methods needed as well as the size of the solution space regarding all the possible
configurations satisfying the characteristics of a feasible reactor. The size of the so-
lution space does not allow to explore every single feasible configuration. Hence,
a metaheuristic approach is used to achieve optimized configurations without eval-
uating the whole solution space. In this paper we present a distributed algorithm
that mimics the foraging behaviour of bees. This behaviour has manifested its
efficiency in dealing with complex problems.
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1 INTRODUCTION

Nuclear fusion research presents open problems which must be solved in order to
be able to design commercial reactors. Some of the limitations of the fusion re-
search are due to the knowledge required to carry out some experiments; but other
limitations are related to the computational requirements of the problems being
solved. Thus, several of the challenges regarding nuclear fusion can be classified as
large-scale problems. The techniques required to solve some of these issues may be
challenging.

In the case of optimization problems, the main issues are related to the explo-
ration of the solution space and the exploitation of approximated solutions for the
problem being solved. The use of distributed metaheuristics is an excellent approach
for these optimizations. Swarm intelligence-based algorithms [1], as for example
those based on bees, can be implemented using the capabilities of large computa-
tional infrastructures like the grid to carry out large-scale optimization problems [2].
Large-scale problems present various peculiarities such as long execution times or
large requirements in terms of storage. In the case of the problem presented here,
the execution time needed for a single evaluation makes the optimization process
challenging.

Swarm intelligence-based algorithms constitute a large research area in which
the optimization techniques try to simulate the behaviour of swarms (originally of
insects, but not limited to those animals). More specifically, they try to imitate
specific characteristics of the swarm as, for example, the bees foraging behaviour.
Honey bees forage for nectar in a changing environment. Discovery of new food
sources may mean abandoning others previously known. Bees are able to adapt
their behaviour to these changes to maximize their productivity.

Swarm intelligence based algorithms consist typically of a population of indi-
viduals (or agents) interacting with each other and with the environment. The
individuals must follow a set or rules, usually very simple. The knowledge about the
problem is distributed among all the individuals. However, the interaction between
those individuals creates a global intelligent behaviour. This global intelligence is
unknown to the different individuals, since it is extracted from all the knowledge in
the entire population. This is known as self-organisation in social systems [1].

Bees constitute a hierarchical society in which the role of each individual is
defined. The division of labour improves the efficiency of the colony [3]. Individuals
do not usually switch among tasks, being specialized on a given task. Scouts search
for new sources and provide information to the rest of the colony. This is performed
by means of a decentralized system without any global decision-making. Individuals
select the source with the best ration of gain to cost from all of the available nectar
sources.

The decisions bees make regarding their movements are based on the communi-
cation among bees [4]. Individuals can move in groups in which a bee plays a leader
role. This bee recruits more individuals in the colony during the waggle dance. In
this dance, the leader exchange information with other bees waiting in the colony
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about food sources. This information is related to the location and quality of the
sources. Bees can reach an agreement and follow the leader. However, the recruits
will not have all the information about the source. Hence, they will follow the leader
but will introduce small changes in their paths. This helps the exploration of the
space and also prevents from over-harvesting.

The rest of this paper is organized as follows: Section 2 summarizes our previous
efforts and introduces a novel algorithm based on the foraging behaviour of bees
while Section 3 details the grid-based implementation of the algorithm. Section 4
explains the problem being optimized, whereas the results of this optimization are
shown in Section 5. Finally, Section 6 concludes the paper, summarizes the main
achievements, and proposes some future lines of work.

2 OPTIMIZATION ALGORITHM

2.1 Previous Efforts

Previously, we focused on the adaptation and use of well-known optimization tech-
niques [5]. Genetic Algorithms (GAs) and Scatter Search (SS) algorithm were con-
sidered.

2.1.1 Genetic Algorithms

We implemented three different GAs regarding the operator used to create a new
offspring and the replacement mechanism. The three implementations achieved op-
timal results in terms of optimization but the usage of the computational results was
far from optimal. The reason is that GAs consider a large number of candidate solu-
tions to be generated and, only when all of the solutions have been evaluated, a new
set of solutions is generated. This model leads to bottlenecks since the algorithm
can be waiting for a long time for a single solution to finish without performing any
other computation. The implementation of GAs showed to be easy for being imple-
mented in a heterogeneous and distributed infrastructure following a master-slave
model.

2.1.2 Scatter Search

The SS algorithmwas developed following the implementation proposed by Mart́ı [6].
This implementation was adapted to the grid and achieved a better optimization
than those obtained with the GAs. The number of candidate solutions being han-
dled at any time is smaller in this case, making the relevance of bottlenecks smaller.
However, due to the iterative model of the algorithm and the number of improve-
ment processes required, the number of bottlenecks and dependencies among jobs
increased. Thus, the usage of resources was also poor.
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2.2 Distributed and Asynchronous Algorithm

Due to the issues explained, we decided to implement a new algorithm, specifically
designed for being executed on distributed platforms, taking advantage of the cha-
racteristics of these infrastructures. The synchronization required by the previous
algorithms is replaced by an asynchronous model. In this a new model, the creation
of new solution does not require the evaluation of another candidate solution. This
generation is performed based on the status of the exploration of the solution space
and the exploitation of optimal solutions.

The algorithm is called Distributed and Asynchronous Bees (DAB) algorithm
since it is based on the foraging behaviour of bees and follows an asynchronous and
decentralized model. It has been designed to run on large and distributed compu-
tational platforms. The algorithm has proved to be an optimal and efficient system
to carry out large-scale optimization problems in distributed environments [7].

Four different types of bees, or processes, can be found in the algorithm:

• Two levels of scouts (devoted to the exploration of the solution space):

1. Rovers : they use diversification methods to explore the solution space.

2. Cubs (associated to a rover bee): random exploration changing variables
based on a good solution, in terms of dispersion, found by a rover.

• Two levels of employed (devoted to the exploitation of known solutions):

1. Elites : perform a wide search using an approximated solution previously
found by a scout.

2. Workers (associated to an elite bee): by using a local search procedure [8],
they explore in-depth the best solution found by elite bees.

The pseudocode of the resulting DAB algorithm is as shown in Algorithm 1.
As can be seen, not all of the bees start foraging simultaneously. The creation of
bees depends on the evolution of the optimisation process. Furthermore (and not
included in Algorithm 1), the DAB algorithm checks whether the bees (jobs) are
performing their tasks. In case of failure on the grid infrastructure, the number
of bees or jobs can be automatically readjusted. Moreover, if the user changes the
configuration of the algorithm during its execution, the number of processes can be
also modified to adapt the algorithm to the new configuration.

2.2.1 Exploration

In order to perform an optimal exploration of the solution space, the resources
devoted to this task try to explore the most diverse areas of the space. Thus, they
generate a set of possible solutions and select the one with the highest distance
to the previously evaluated solutions. This distance is calculated after performing
a normalization of the variables involved in the optimization. The selected solution
will then be evaluated.
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Algorithm 1: The DAB Algorithm Pseudocode

1 Initialise the population of solutions and create bees;
2 while Stop criterion not reached do

3 foreach Evaluate solution x by bee B do

4 Obtain the probability of the x to be selected;
5 if x is the global best then

6 if B is an elite then

7 Create new workers;

8 else if Idle Elites then

9 Create elite;

10 else if B is a Rover then

11 if Idle Cubs then

12 Create new solutions with an in-depth local search;

13 Send B to explore new solutions;

14 else if Idle Elites then

15 Create elite;

16 Create new solution for the bee B based on its type;

During the generation of new solutions the algorithm must ensure that the value
of each variable is within the limits of that variable for the problem being solved. If
the value is out of the limits, the algorithm introduces a new value using a boundary
factor. This helps enhancing the exploration of the solution space.

2.2.2 Exploitation

The exploitation is based on approximated solutions previously found by means of
the exploration processes. In the tests presented here, the elite bees use a local search
over the improved solutions considering a wide modification of the variables defining
the solution. The workers introduce smaller modifications to perform a more focused
enhancement.

2.2.3 Parameters of the Algorithm

Taking into account the previous characteristics of the algorithm, and also consi-
dering the requirements of the problem being solved, the parameters of the algorithm
are as shown in Table 1. While the parameters regarding the number of resources
devoted to the optimization will exist for any problem, the other parameters have
been introduced based on the problem being solved in this work.
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Parameter Symbol Description

Grid Related
Elites Number EN Maximum number of elites
Workers Number WN Maximum number of workers – per elite
Rovers Number RN Maximum number of rovers
Cubs Number CN Maximum number of cubs – per rover

Optimization Related
Modification Rate MR Probability to modify a variable when a candidate

solution is generated
Elite Solutions ES Maximum number of elite solutions considered
Candidate Factor τ Constant to modify the variables of new solutions

Boundaries Factor ϕ Constant to modify the variables of new solutions
to fix within their boundaries

Workers Factor ψ Constant to modify the variables of new solutions
when a Local Search is performed

Table 1. Parameters of the algorithm

2.2.4 Specialization

While in our previous efforts the exploitation of the known approximated solu-
tions was based on a mutation process using the standard deviation of the variables
and local searches, in the current research we only consider different levels of local
searches.

Taking into account the division of labour and the specialization, as well as the
fact that bees do not switch among tasks, the final design of the algorithm uses two
different types of processes exploiting optimized solutions and two other procedures
exploring the solution space.

2.2.5 Dynamic Reconfiguration

The algorithm can be reconfigured at any time just by modifying an XML file. Any
of the configuration parameters can be changed including the maximum number of
resources being used, the local search modification factor, or those related to the
grid infrastructure itself. For example, the preferred CEs or SEs or the rank criteria
to order the CEs can be specified.

Moreover, the algorithm itself is able to change the configuration related to the
grid infrastructure based on the quality of service being provided by the sites on
the VO.

3 GRID IMPLEMENTATION

The algorithm has been developed in Python. It has dependencies with the NumPy
library and the lightweight DOM (Document Object Model) implementation library.



Swarm Intelligence for Stellarator Optimization 37

Depending on the version of the Python interpreter installed on the User Interface
(UI) of the grid infrastructure it might be necessary to download and compile those
libraries since they are not included in the old versions.

The algorithm makes use of a hash table to store the explored solutions in order
to avoid evaluating twice the same configuration. A binary search tree is included
in the table for collision resolution.

3.1 Long-time Jobs

In order to reduce the impact of the time waiting in queues on the final execution
time, we have introduced the idea of long-life jobs in the design. These jobs read
the SE waiting for input and, as soon as this input is available, they process the
information and store the result in the SE. Another process will use this information
and produce new input data. The jobs will be running as long as the security
constraints of the grid infrastructure will allow. Only two types of processes (rovers
and elites) use this feature. The other processes are short jobs which just evaluate
a single input and finish. Using the long-time jobs for all submitted tasks may lead
to problems with the LFC (Logical File Catalogue).

3.2 WN-UI Communication

As mentioned, the long-time jobs regularly require of new input. They ask a mas-
ter process for this input. This master process runs on the UI of the grid. The
implementation of this communication uses the LFC: the remote process updates
a file on a location known by the local and the remote tasks, the master receives
this update, downloads the data generated by the remote element, generates new
input, and stores the input using a given path of the LFC.

In order to reduce the number of checks that the local process has to perform,
all the remote processes update the same file. Hence, a barrier system has been de-
veloped to avoid that two or more tasks update the file at the same time overwriting
the information stored on that file. Thus, the LFC and the SEs of the infrastructure
are used as a shared-memory component of the infrastructure.

4 STELLARATOR OPTIMIZATION

The problem being solved in the enhancement of the magnetic confinement of plasma
in a fusion device [9, 10]. By improving this confinement, the plasma may become
more stable and the probabilities for obtaining fusion reactions increase. Therefore,
the efficiency of the device increases. To perform this optimization, we consider the
improvement of the Fourier modes describing the plasma boundary.
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4.1 Costs of the Optimization Process

The fitness function of this problem requires the execution of an application workflow
(shown in Figure 1) [11]. The required execution time of the workflow depends on
the characteristics being modelled. For optimized configurations, this workflow has
40 458 792 Millions of Instructions (MI). This value changes depending on the input
configuration because the grid used by the main code involved in the process can have
more data. This code (called VMEC, Variational Moments Equilibrium Code [12])
could require of more iterations to find the equilibrium and the output file can have
more data, so the objective function can take longer. Thus, the execution time may
vary from several minutes to hours, showing a large variability. This variability
introduces challenges in the optimization algorithm, since asynchronism is required
and the communication among tasks needs to be performed without leading to
continuous bottlenecks.

inputcurrents

config. params.

coils

FitnessCOBRAMercierVMECMGRID

Visualisation Generation

Fig. 1. Workflow to measure the quality of the confinement

The workflow only requires one CPU, although some of the components of the
workflow are suitable for a parallel implementation. Since 32 and 64-bit machines
may be found in the production grid infrastructures used, the applications involved
in the optimization process must deal with these different architectures. Distinct
versions of the libraries required by the applications are included in the optimization
process.

4.1.1 Bandwidth

Load balancing is critical in other optimization algorithms running on the grid [13].
For the DAB algorithm this load balancing is not crucial, as synchronization is not
required among the different processes involved in the optimization.

The amount of information transmitted through the network is high in this
algorithm. Every bee must send not only the small files to communicate with the
colony, but must also store all the results in the SE. The size of a single result is
5.5MB. Since during an optimization process thousands of results are generated,
various GBs are transferred from the WN to the SE. All this data has been pre-
viously analysed, which also shows the necessity of distributed environments for this
problem.
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4.1.2 CPU

As previously noted, the workflow required to calculate the fitness function of inter-
est takes different time depending on the configuration being evaluated. One of the
applications (VMEC) implements a Levenberg-Marquardt algorithm.

After VMEC, the workflow executes the fitness function that is given by Equa-
tion (1). This function uses the magnetic surfaces (i) of the confined plasma, and
the intensity of the magnetic field (B) at each of these surfaces. The values involved
in the expression are extracted from the output of VMEC. This function provides
a value used for measuring the quality of the magnetic confinement of plasma in the
fusion device. The physics involved in this expression, as well as the explanations
of why this function is relevant can be also found in [11].
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Once the fitness value has been calculated, the workflow analyses the Mercier [14]
and ballooning stabilities of the configuration [15]. If both criteria are satisfied, the
configuration is valid.

5 RESULTS

Fusion VO has been used to carry out this optimization process. It is a production
infrastructure running gLite with resources distributed through several locations in
Europe.

Table 2 shows the configuration used for the optimization being carried out.

Grid Related Optimization Related

Parameter Value Parameter Value

Elite Number 50 MR 0.20
Worker Number 8 ES 200
Rover Number 5 τ 0.0005
Cub Number 4 ϕ 0.02

ψ 0.0001

Table 2. Parameters of the tests

5.1 Computational Results

The aggregated execution time of all the evaluations was 5 287 hours, with a wall
time of 120 hours, which implies a speed-up of 44.1. During the execution of one
of the tests performed (shown in Figure 2) the number of computational resources
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was changed to show the automatic reconfiguration of the algorithm. It can be seen
how the number of elite bees is increased up to 100 and then reduced again to 50.
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Fig. 2. Evolution of the number of bees

The variability on the number of tasks running was caused by a problem with
the WMS (Workload Management System). As can be seen, the system reconfigured
the number of resources and continued the execution automatically. It waited until
all the workers had finished, without creating new tasks of this type. This reduced
the load of the WMS.

5.2 Optimization Results

The first configuration found in the optimization process had a value of 156 106 868
for the expression in Equation (1). In this case, the algorithm does not consider an
existing configuration to start the optimization, although any suitable configuration
could be used as starting point. This latter scenario becomes especially interesting
when the algorithm has been previously executed and a set of suitable and opti-
mized configurations has been created. The best configuration achieved after the
optimization processes carried out had a value of 1 717 129 for the same expression.
Table 3 shows the best values found for different tests, revealing the reproducibility
of the experiments. The different speed-up is due to the different evolution, leading
to a different number of jobs being submitted, and also to the usage level of the grid
infrastructure.
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Best Result Wall Time Execution Time Speed-up

Test 1 1 739 083 120:08:41 5 296:12:58 44.1
Test 2 1 799 798 120:00:37 5 356:23:21 44.6
Test 3 1 769 937 120:01:05 5 005:58:49 41.7
Test 4 1 794 375 120:11:10 5 311:00:07 44.2
Test 5 1 717 129 120:03:31 5 287:10:25 44.1

Table 3. Tests performed

Figure 3 shows the cross-section of the confined plasma for the best configura-
tion found. Each of the lines in the figure represents a magnetic surfaces, which
corresponds to the values of i in Equation (1).

Fig. 3. Cross-section of the optimized configuration
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6 CONCLUSIONS

As shown, the use of metaheuristics with the grid permits the achievement of opti-
mized results in a reasonable time. However, the design of the optimization tech-
nique needs to consider the special features of the computational platform in which
the enhancement process will take place.

Large-scale optimization problems present some characteristics that make chal-
lenging to design and develop automated optimization systems.

The optimization achieved demonstrates how the combination of large-scale com-
putational platforms and distributed metaheuristics represents an optimal approach
to carry out optimizations of large-scale problems.

As future work we plan on performing further optimizations and adding more
target functions. This will lead to configurations improved considering additional re-
levant physics characteristics. The complexity of the optimizations will also increase.
A new version of the algorithm adapted to use CREAM-CE is being developed [16].
Direct submission to the CE should avoid situations of problems with the load of
the WMS.
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