
Computing and Informatics, Vol. 28, 2009, 655–672

VERIFICATION OF A FIELDBUS SCHEDULING
PROTOCOL USING TIMED AUTOMATA

Nicholaos Petalidis

Department of Informatics and Communications
TEI of Serres
Terma Magnisias
62100 Serres, Greece
e-mail: n.petalidis@computer.org

Manuscript received 5 September 2007; revised 3 November 2008
Communicated by Jolana Sebestyénová

Abstract. This paper deals with the formal verification of a fieldbus real-time
scheduling mechanism, using the notion of timed-automata and the UPPAAL model

checker. A new approach is proposed here that treats the set of schedulers that
regulate access on a fieldbus as a separate entity, called the scheduling layer. In
addition a network with a changing topology is considered, where nodes may be
turned on or off. The behaviour of the scheduling layer in conjunction with the
data link, the medium and the network management layer is examined and it is
proved that it enjoys a number of desirable properties.

Keywords: Fieldbus, formal verification, protocol verification, timed automata,
UPPAAL

1 INTRODUCTION

Factory communication protocols that are designed to operate at the plant level are
usually token-bus protocols built around a scheduler that distributes a token across
the network’s nodes. Examples of such protocols are the Foundation Fieldbus [1]
and the ISA Fieldbus [2]. These fieldbus protocols, as they are called, perform time-
critical transactions which must be concluded within a pre-specified time window.
Fieldbuses are usually employed in hazardous environments (e.g. nuclear plants) and
their error-free operation is very important.

656 N. Petalidis

During the previous decade a number of attempts were made to confirm that
these protocols performed in accordance to their designer’s intentions. However, the
lack of industrial strength automated tools at the time, prompted researchers to
resort to simplifications of the underlying mechanisms in the protocols, failing thus
to provide convincing proofs of correctness.

For example in [3] a fieldbus scheduler was presented and analysed but only as
a separate entity and the resulting verification results were valid only under normal
operating conditions, i.e. with a single scheduler operating on the link. A formal
approach was also taken in [4] but the timing constraints of the protocol were not
taken into consideration. Similar approaches can be found elsewhere too. In [5]
a simple consumer-producer scenario was analysed but again with no reference to
the scheduling characteristics of the protocol.

The first attempt to analyse a fieldbus protocol with a mature modelling tool,
namely UPPAAL [6, 7], was made in [8]. However, in there, emphasis was placed
on the “bus coupler” and the transmission of data over the data link layer. The
protocol under investigation did not include any scheduling mechanism.

A different method using UML Statecharts is reported in [9], where the
PROFIsafe fieldbus protocol is specified by means of UML Statecharts and model-
led using the VALID toolset. However, the protocol itself is a master-slave protocol
with no token circulation. Similarly in [10] where a verification via simulation was
attempted the scheduling mechanism is not taken under consideration.

In [11] a model of the hardware redundancy mechanism of the Ethernet Po-
werLink fieldbus protocol appears. The mechanism allows for devices to connect
simultaneously to two independent links and to receive frames from both but process
frames from only one. This way if one link fails, the network can still operate. The
presented model is again based on timed automata. The model, however, does not
include the redundancy mechanisms that relate to the link’s arbiter.

A fieldbus that has attracted much attention is the Controller Area Network
(CAN) protocol, and various versions of it have been analysed in a number of articles,
e.g. [12, 13, 14, 15]. CANs do not have a dedicated scheduler for the link and thus
their modelling does not include such a feature. Instead there is a time-master node
that is responsible for maintaining a common sense of time. Of particular interest
is [12] because the authors investigate the problem of modelling a system with clock
drifts. The authors propose calculating the maximum drift ǫ of a clock and then
offering a synchronisation within the [t−ǫ, t+ǫ] interval in order to model the possible
variance that may be present due to the existence of the drift. Unfortunately, this
technique can only be realistically used when ǫ is in the same order of magnitude as t,
for otherwise most modelling tools cannot handle the resulting difference between t

and ǫ.
Finally in [16] another real-time network, RTnet, is modelled and its operation

is verified. Although RTnet is not a true fieldbus protocol it nevertheless has a lot
in common with fieldbus protocols, such as real-time transmissions with a token
distributed around the network. Unlike a fieldbus, however, RTnet follows a dis-
tributed approach in scheduling real time traffic. The paper proves a number of

Verification of a Scheduling Protocol 657

properties that the protocol enjoys, for example that at most one node has the role
of the token holder, at most one node has the role of the monitor and so on.

Similarly, here the focus is placed on a time-critical protocol but with a schedul-
ing operation that is different from that of RTnet. Also, in order to provide the proof
a different approach is proposed that treats the set of schedulers as a separate layer,
the scheduling layer. This is in contrast with the conventional view that scheduling
is just a part of the data-link layer. Furthermore, our purpose is not to simply verify
the absence of deadlocks and livelocks, but to validate that the operating require-
ments hold even in a network with a changing topology. During this process the
methodology of specifying and validating each layer is also presented. We believe
that the treatment of the set of schedulers as a layer and the breadth of the approach
that includes a changing topology of schedulers and data nodes constitute the novel
characteristics of this paper.

The real-time scheduler adopted here is a version of the scheduler found in the
Foundation Fieldbus data-link layer protocol that abstracts away from all unneces-
sary details like for example the exact format of the packets the scheduler transmits
or receives. The modelling and validation is performed using the UPPAAL tool
which itself is based on the notion of timed automata [17, 18].

2 THE UPPAAL MODELLING TOOL

The following is meant to be a brief introduction to the UPPAAL tool. The inter-
ested reader can find a more extensive tutorial on UPPAAL in [19].

UPPAAL is a set of tools that allows for the validation and verification of real-
time systems.

One can use the tool to model a system using timed automata. A timed au-
tomaton is essentially a finite state machine extended to include the notion of time
via the adoption of clock variables. Clocks use a dense-time notion and evaluate to
a real number. More formally:

Definition 1. A timed automaton (TA) T is a tuple 〈L, l0, C, A, E, I〉 where L is
a finite set of locations and l0 is the initial location. C is the set of clocks, A is a set
of actions, co-actions and the internal τ action. E ⊆ L×A×B(C)× 2C ×L is a set
of edges between locations with an action, a guard, and a set of clocks to be reset
and I : L → B(C) is a function assigning invariants to locations [19].

In the above definition, the set of possible guarding expressions typically includes
conjunctions over simple conditions involving clocks or integer variables and simple
relations (<,≤, =,≥, >) to natural numbers.

Locations can be ordinary, urgent or committed. An automaton in an urgent
or committed location cannot delay. Furthermore, an automaton in a committed
location cannot interleave with other automata.

Timed automata may form a network, i.e. a system of more than one automata
that communicate with each other via synchronisation actions.

658 N. Petalidis

Definition 2. A network of timed automata is the parallel composition A1| . . . |An

of a set of timed automata A1, . . . , An, called processes, combined into a single
system by the CCS parallel composition operator with all external actions hidden.
Synchronous communication between the processes is by hand-shake synchronisation
using input and output actions; asynchronous communication is by shared variables.

Time progresses at the same pace for each automaton in the system.
UPPAAL allows for one to define a system, simulate it, verify invariants and

perform reachability analysis. UPPAAL provides with a number of queries that can
be performed on the system under question and prove the reachability, safety and
liveness properties that the system respects. More specifically, the queries available
in the verifier can be categorised as follows:

• Queries used to prove reachability properties, i.e. that there exists a path starting
at the initial state, such that p is eventually satisfied along that path.

– E<>p: there exists a path where p eventually holds

• Queries used to prove safety properties, i.e. that something bad will never happen

– A[]p: for all paths, p always holds

– E[]p: there exists a path where p always holds

• Queries used to prove liveness properties, i.e. that something good will eventually
happen

– A<>p: for all paths, p will eventually hold

– p → q: whenever p holds, q will eventully hold

where p and q are simple formulas with basic arithmetic and Boolean operators.
Using this language we are allowed to prove important properties that the field-

bus protocol respects, for example that as long as there is a scheduler online, a node
will be offerred a token.

3 DESCRIPTION OF THE PROTOCOL

The protocol described here is a token-bus real-time protocol based on the Foun-
dation Fieldbus data link layer protocol [1]. Nodes are connected on a bus-type
network. A node can transmit on the bus if it has authorisation to do so. Authori-
sation to transmit is granted via the reception of a token. The token goes around
in address order from one node to another. A node may request extra time within
the same cycle of token circulation, in which case if time permits it will receive the
token for another time, after all nodes in the link have been served at least once.

The link should not be inactive for more than a pre-specified period of time
and thus nodes are forced to transmit at least every VMRD < PTRD slot times (VST).
VMRD denotes the maximum response delay allowed to be observed and is a constant

Verification of a Scheduling Protocol 659

value set by the network management and PTRD is the token recovery delay. The
slot time is equal to twice the maximum delay in the transmission of one octet plus
a safety factor. In here, it is assumed that the minimum packet size is 8 octets long.
If a node does not have a packet to transmit during the next VMRD slot times then
it should return the token.

The particular node which is responsible for distributing the token across the
other nodes of the link will be called a Link Active Scheduler (LAS), or simply an
active scheduler. An active scheduler is said to hold the scheduler token. There
can be only one LAS at any particular instant. Any node that has the necessary
functionality for becoming an LAS is called a Link Master (LM). A node that can
become neither an LAS nor an LM is a Data Link Entity (DLE).

In order to make the protocol robust there are mechanisms, in the event of
failure of the current active scheduler, for enabling an LM to become an LAS:

i) Each LM is assigned an address i and listens to the bus. If there is no activity
for a period of i × VST then the LM transmits a CL (Claim LAS) packet to
claim LAS responsibilities. If again no activity is heard for another period of
i×VST, the LM sends the same packet again, after which it chooses a uniformly-
distributed random integer in the range (0 . . .3)×VST, and monitors the medium
for that many slot-times. If no activity is again heard the sending LM assumes
scheduling responsibilities and transmits a packet so that there is no more than
14 × VST octet-durations of inactivity on the local link.

ii) Once an LM has become the active scheduler it passes the token, via the PT
(Pass Token) packet, to the nodes of the link. A node that receives this token is
said to hold the delegated token. When a node finishes transmitting it returns
the token via a RT (Return Token) packet or an RI (Request Interval) packet.
In the latter case, the node is requesting for extra time within this cycle of
token circulation. Only one node at a time can hold the delegated token.

iii) An LM node may request to become an active scheduler, in which case the
LAS transfers scheduling responsibilities through a TL (Transfer LAS) packet
before it starts a new cycle of circulating the token. The receiving LM may
choose to explicitly deny assumming responsibilities through an SR (Status
Response) packet, or it may accept responsibilities by starting itself a new
token circulation.

iv) When the active scheduler is awaiting for a node to reply (through an RT, RI,
or SR packet) it should make sure that the link should not go idle for more than
VIRRD slot times. VIRRD denotes the value of the immediate response recovery
delay.

v) Finally, in order to minimise clock drifts the LAS distributes a TD (Time Dis-
tribution) packet that allows the clocks of the DLEs to be syncrhonised with the
clock of the scheduler. This packet is transmitted at least once in a 0.95×VTDP

period, and it takes priority over any other transmission.

The default values for the variables introduced so far can be found in Table 1.

660 N. Petalidis

Finally, it is assumed that a node that can act as an LM receives the ON signal
by the network management before it goes on-line and an OFF signal before it goes
off-line.

SNODES={1016,...,FF16} The set of scheduling nodes

DNODES The set of data link entities (DLEs)

VST∈{1,...,4 095} The slot time. Its unit is the transmission duration
of one octet and its suggested value is 8. In a link
with a transmission rate of 1Mbps it is 512µsecs

VMRD∈{VST,...,11×VST} PTRD∈

{VMRD+3,...,14}

The maximum period a token holder can go with-
out transmitting and the associated recovery delay.
Suggested values are 10 or VMRD + 3.

VIRRD∈{2×VST,...,12×VST} The maximum period of inactivity which an active
scheduler allows. Its default value is VMRD + VST

VDTHT The default token holding time. Its default value is
set to 278 × VST

Λi=i×VST, i∈SNODES The maximum period of link inactivity, for which LM
i waits, before claiming scheduling responsibilities

VTDP∈{5 ms,55 sec} The time distribution period. Determines the mini-
mum frequency of time distribution on the local link
and was set to 51.2 sec.

VMDC The minimum delay between successive network-
management commands

Table 1. The parameters of the system

3.1 Assumptions

Some assumptions and simplifications were made in order to produce a model with
a manageable state-space. In particular

i) Only packets that are transmitted from/to an LM or a LAS are modelled. The
rest, since they are not identifiable by an LM or a LAS, are modelled as VAR
packets and only their presence is detected.

ii) The RQ (Round-trip delay query) and RR (Round-trip delay response) packets
are not modelled, since they are used to measure the physical characteristics of
the link and these cannot be interpreted realistically on the model.

iii) Transferring of the LAS takes place after an explicit request from an LM.
In this model transferring of a LAS through a TL packet takes place non-
deterministically.

iv) Inclusion of the standardised request/response sequence for node activation
through the transmission of PN (Probe Node), PR (Probe Response) packets
increased the generated state-space prohibitevely. Instead to model the effect of

Verification of a Scheduling Protocol 661

a changing token circulation list, the LAS would non-deterministically choose
to include or exclude nodes from this list.

v) Clock-drifts are inevitable in real life. Fieldbus devices are expected to drift
in the range of µsecs for every sec. However, UPPAAL cannot model variable
rate clocks. Stopwatches can be used to the same effect but that would require
to include invariants that check for values in the {1 µsec, . . . , 51.2 × 106 µsec}
range, which again is not possible in the tool. It was proved, however, that
a time synchronisation packet (TD) was transmitted at least once in the required
intervals.

4 DESIGN AND METHODOLOGY

4.1 The Design of the Specification

One of the peculiarities of specifying a scheduler is that it cannot be directly thought
of as representing a layer that provides services to the layer above it using the layers
below it. In fact, the scheduler’s functions appear to be an isolated part of the
data-link layer protocol. Even the standards describe the scheduler’s functionality
in a separate part of the data-link layer specification. Adopting this approach during
formalisation leads to faithful interpretations of the informal specification and formal
models suited for deriving conforming implementations.

However, if one wants to specify the properties that the specification should
honour and examine its behaviour this is not the most appropriate approach. In
such a case the specification depends upon the formulation of predicates. In the
case of layered protocols, these properties are part of the specification of the service
definition and can be easily deduced from there. Scheduler specifications, however,
do not have such service definitions, at least in the form suggested in [20] or [21].
This creates the problem that it is difficult to decide against what properties to
verify the protocol.

In order to cope with this problem, a list of properties that each scheduler should
have is formulated and it is considered that each scheduler provides a service to the
data-link layer. In other words, it is assumed that the set of active and inactive
schedulers forms a layer which provides a service to the data-link layer using the
physical layer. The benefit of this view is that arguments can be made about the
behaviour of the scheduling in general; the arguments are not restricted to proofs
about the absence of deadlocks or livelocks in a particular scheduler node. Whereas
in the classical layering of fieldbus standards the properties of the schedulers are
implicit, in this view they are explicit. Thus the job of the verification engineer is
made easier. An additional benefit is that by un-coupling the scheduling from the
data-link layer, the process of specification and verification is modularised and thus
simplified.

Another design decision made is to consider not only the interactions of the
scheduler with the data-link layer but with the network management as well. In real-

662 N. Petalidis

time protocols it is crucial to be able to argue about events which should happen.
For example, it is important to insist that at any time there is an LAS operating
on the link. Such a statement, though, without a qualifying assumption is usually
too strong and sometimes unrealistic. Thus the previous statement would better
be as follows: at any time, provided there is at least one LM on-line, there is an
LAS operating on the link. Therefore, a scheduler is viewed as operating in two
dimensions. Above and parallel to the scheduling layer there is the physical layer
and vertical to the scheduling layer there is the network management layer. The
network management instructs a scheduler to go either on-line or off-line. Figure 1
presents this view together with the view which conventional approaches take.

Physical Layer

LAS DLE DLE LM

Data Link Layer Data Link Layer

Scheduling Layer

DLE DLE

LAS LM

Physical Layer

Network Management Layer

Fig. 1. The Fieldbus layers as viewed conventionally (left) and as seen here (right)

Finally, it is assumed that the functions of the lower level, such as framing,
validation of packets and communication with the physical layer are provided by
the medium which interconnects all the nodes of the link. A similar decomposi-
tion of functions is performed for the data-link entities of the network. Thus, the
term medium layer will be used from now on to denote a layer with the combined
functionality of the physical layer and the lower sub-level of the network’s nodes.

Having a separate medium layer gives us not only better decoupling between the
upper level and the lower level functions of a node but also allows us to explicitly
model the primitives exchanged between the scheduling and the physical layer. In
particular the scheduler needs to detect the presence of activity on the link and
it does this by detecting the occurence of the primitives START, DATA and END
which are issued by the physical layer. Similarly, in our model the medium layer
“translates” the occurrence of a packet in the link by issuing the same primitives.
Finally, a separate medium layer also allows us to explicitly model link characteristics
such as packet loss or corruption. The decomposition of the layers and the packets
they exchange is presented in Figure 2.

4.2 The Adopted Methodology

In order to follow a consistent method in the development of the specification for
the layers presented above the following methodology was used.

The set of messages accepted by each layer was divided into two subsets: a sub-
set Σout containing all the messages that the automaton transmits and a set Σin

containing all the messages that the automaton is ready to accept. The union of

Verification of a Scheduling Protocol 663

Fig. 2. Decomposition of the system under investigation

these forms the set of messages Σ of the automaton: Σ = Σin

⋃
Σout. This basically

incorporates what a layer might send or receive.

After that each safety property was formulated as follows: For every message
X ∈ Σout a requirement of the form “if X occurred then Y ∈ Σ also occurred”, was
added.

Similarly each liveness property was formulated as follows: If Z ∈ Σ occured
then X will (eventually) occur or if a timer expired then X will (eventually) occur.

Because the query language of UPPAAL only allowed to prove properties in-
volving locations and variables but no actions, each automaton was annotated with
a local variable indicating the last message received. It was then possible to express,
whenever necessary, requirements in the form

msg.pType == PT → SL.lastMessage.pType== RT.

Here a message is a structure defined as follows:1

typedef struct {

int [PT,VAR] pType; //The type of the packet

int [0,numberOfNodes-1] sender; //the address of the sender

int [0,numberOfNodes-1] receiver; //the address of the receiver

int alottedTime; // the time alotted for token usage

int usedTime; // the time actually used

} Message;

After the requirements were laid out in the form of the query language of UPPAAL,
each automaton was constructed separately and proved that it satisfied the proper-
ties. This initial proof was made against an “observer”, i.e. an automaton that at
any time is ready to synchronize with the automaton under investigation.

1 Shared variables were used to communicate values over a single synchronisation chan-
nel.

664 N. Petalidis

5 THE AUTOMATA

5.1 THe Data-Link Layer

The set of messages of the data-link layer can be defined to be the set of events
(packets) that it can understand:

ΣDL

def
= {TDj, PTj, RTi, RIi, VAR | i ∈ SNODES, j ∈ DNODES}.

The set of messages that the data link-layer generates can then be defined as follows:

Out(ΣDL)
def
= {RIi, RTi, VAR | i ∈ SNODES}

where the notation RIi denotes a packet sent via the medium to a node with ad-
dress i.

The timed automaton template representing one DLE is presented in Figure 3,
and some of the formalised properties that the automaton respects can be found in
Table 2. The template was parameterised by the address of each DLE.

Vln=msg.sender,
Vcrd=msg.alottedTime,
Crd = 0,
Tmrd=0

msg.pType = ltype,
msg.sender = address,
msg.receiver = Vln,
msg.alottedTime = lduration,
msg.usedTime=Vcrd,
Vcrd=0,
Tmrd=0,
Crd=0

msg.pType=VAR,
msg.sender=address,
msg.receiver=temp,
msg.alottedTime = 0,
msg.usedTime = 0,
Tmrd=0

Tmrd = 0,
Crd = 0,
Vcrd=0

Crd=0,
Tmrd=0

toLink!

fromLink[address]?

fromLink[address]?

toLink!Tmrd<=Vmrd

temp:int[tnStart,tnEnd]

noToken hasToken

Crd>=Vcrd

Crd<Vcrd && Tmrd<Vmrd

msg.pType==PT

ltype:int[RT,RI],
lduration: int [Vdmdt,Vdtht]

msg.pType==TD

Tmrd>=Vmrd

Fig. 3. The timed automaton representing the Data Link Layer

The automaton has only two states, noToken and hasToken. It can move to
the hasToken state only if it receives a token. It can stay in the hasToken state
transmitting VAR packets as long as it respects the timing constraints. At any time
before the expiration of the token holding time it may return the token via a RT or
an RI packet. While in the noToken state it may receive a TD packet.

Note that specifically for the data-link layer there was no requirement of the
form if Z ∈ Σ occurred then X will (eventually) occur because the schedulers should
continue to operate even if a DLE node fails to act.

Verification of a Scheduling Protocol 665

A[] (msg.pType==RT
imply (DLE1.lastMessage.pType==PT
|| DLE1.lastMessage.pType==VAR)
&& DLE1.Tmrd<=Vmrd
&& DLE1.Crd<=Vcrd)

If the DLE has sent an RT packet then ei-
ther the previous packet was an PT packet or
a V AR packet and the transmission respected
the relevant time limits.

A[] (msg.pType==VAR
imply (DLE1.lastMessage.pType==PT
|| DLE1.lastMessage.pType==VAR)
&& DLE1.Tmrd<=Vmrd
&& DLE1.Crd<=Vcrd)

If the DLE has sent a V AR packet then ei-
ther the previous packet was an PT packet or
a V AR packet and the transmission respected
the relevant time limits.

Table 2. Some basic safety properties that a DLE automaton respects

5.2 The Scheduling Layer

The set of messages of the scheduling layer can be defined to be the set of messages
that it may send or receive:

ΣSL

def
= {ON, OFF, CL, TLi, TDj , PTj, RTi, RIi, STARTi, DATAi, ENDi |

j ∈ DNODES, i ∈ SNODES}.

The set of messages that the scheduling layer sends can then be defined as follows:

Out(ΣSL)
def
= {PTj , CL, TLi, SRi, TDj | i ∈ SNODES, j ∈ DNODES}.

The automaton for the scheduling layer is presented in Figure 4. The automa-
ton can be in any of thirteen different locations, one of them being the ‘off-line’
location, which denotes that network management has instructed the automaton to
turn off. There are three more locations where a scheduler lies during the arbitra-
tion procedures (LM1, LM2, acquiringToken) and three locations for the case where
the scheduler circulates the token (hasSchedulerToken, monitoringPT, noScheduler-
Token). While in state hasSchedulerToken the scheduler may transmit a TD or
a PT packet. One more location denotes the state where the scheduler has trans-
mitted a TL packet (transmittedTL) and one where the scheduler has received the
TL packet (receivedTL). Finally the rest of the locations (not shown in the figure)
are used to eliminate activity due to noise on the link and detect corrupted packets.

This automaton is parameterised by the address of the scheduler.

Some of the major properties that the scheduling layer should respect are sum-
marised in Table 3.

5.3 The Medium Layer

The medium is basically the interface between the scheduling and the data link
layer. The medium guarantees certain properties to the data link layer, provided
that it can rely upon the scheduling layer for other properties and vice versa.

666 N. Petalidis

activity[Vtn]?

toLink!

activity[Vtn]?

toLink!

activity[Vtn]?

activity[Vtn]?

toLink!

Ttdp<(Vtdp−Virrd)

fromLink[Vtn]?

toLink!

activity[Vtn]?

toLink!

Tirrd>=Virrd

toLink!

activity[Vtn]?

activity[Vtn]?

fromLink[Vtn]?

toLink!

hasSchedulerToken

waitingForSchedulerTokentransmittedPT

Tirrd<=2*(Vtn+16)*Vst

Tirrd<=Virrd

Tirrd<=3*VstTirrd<=(Vtn+16)*Vst

receivedTL

OffLM1 LM2

transmittedTL

acquiringToken

Tirrd>=Ptrd

msg.pType!=SR
Tirrd>=Virrd

msg.pType ==
	TL

msg.pType==TL

Tirrd>=(Vtn+16)*Vst

Ttdp<(Vtdp−Virrd)

Tirrd>=2*(Vtn+16)*Vst Tirrd>1*Vst

Tirrd<=Virrd

Ttdp>=Vtdp

msg.pType==SR

Tirrd<=Ptrd &&
	Ttdp<=Vtdp

Tirrd<=Ptrd

Fig. 4. The timed automaton representing an LM (simplified for presentation purposes)

E<> msg.pType==SR && msg.sender==1
&& SL2.LM1

An LM can send an SR packet (rejecting an
attempt to transfer the LAS)

E<> SL1.hasSchedulerToken It is possible for an LM to acquire the sched-
uler token

A[] (msg.pType==PT and msg.sender==0
and Medium.Receiving)

imply (SL1.transmittedPT
&& SL1.Tirrd<=Ptrd)

If a PT packet was transmitted by a scheduler,
then that scheduler was in the transmittedPT
state and the link did not remain inactive for
more than PTRD time

A[](SL1.Tirrd>=16*Vst
and Medium.Receiving)

imply msg.pType==CL

Always, if at any time there is link inactiv-
ity of more than Λi time then a CL packet is
transmitted

(SL1.Tirrd>=16 and msg.sender==0
and Medium.Receiving and not SL1.Off)
-> msg.pType==CL

If the link is inactive for Λi slot times, then
a scheduler that was online during this period
should offer a CL event

msg.pType==TL && msg.receiver==1 &&
Medium.Receiving ->
((msg.pType==SR && msg.sender==1
&& Medium.Receiving) or
(msg.pType==PT && msg.sender==1
&& Medium.Receiving) or
(SL1.Tirrd>=Virrd &&
SL1.hasSchedulerToken) ||SL1.Off)

If an attempt to transfer LAS responsibilities
is made, then the receiving LM will either re-
ject the transfer, or transmit a PT or nothing
will happen and the current LAS will resume
scheduling responsibilities, unless it is turned
off

SL1.hasSchedulerToken
&& msg.pType==RI && msg.sender==1
&& SL1.Vrtha[0]>=Vdmdt ->

(msg.pType==PT && msg.receiver==1
&& SL1.newCycle==false
&& SL1.transmittedPT) || SL1.Off

If a DLE has requested for another interval in
the current cycle of token circulation then it
will receive it provided that there is enough re-
maining time (VRTHA) and that the scheduler
will not be turned off

not (SL1.LM1 || SL1.LM2 ||
SL1.Off || SL1.acquiringToken)->
(SL1.Ttdp==Vtdp imply msg.pType==TD)

If a scheduler has the token then it will trans-
mit a TD at least every VTDP time

Table 3. Some basic properties of the scheduling layer

Verification of a Scheduling Protocol 667

The set of messages that the medium can transmit or receive is basically the
union of the messages of the data-link and the scheduling layer without the network
management messages.

ΣML = ΣDL

⋃
ΣSL − {ON, OFF}

Out(ΣML)
def
= {TLi, TDj, SRi, PTj, RTi, RIi, STARTi, DATAi, ENDi |

j ∈ DNODES, i ∈ SNODES}

The timed automaton for the medium is represented in Figure 5. The medium
receives packets, generates the appropriate activity events to all but the originating
node, and transmits packets to the appropriate destination with the appropriate
time delay. TD packets are broadcasted to all nodes. A synchronisation on the
toLink channel will set the fields of the shared variable msg to the appropriate
values, e.g. a token returned with an RI packet might set the variable as follows:

msg.pType=RI; //The type of the packet

msg.sender=20; //the address of the sender

msg.receiver=16;//the address of the receiver

msg.alottedTime=556; // the time alotted for token usage

msg.usedTime=556; // the time actually used

The medium forces a delay in the transmission of packets of at least VST time and
after that delay a synchronisation will be offered on the toLink channel and the
listening node will receive the message.

The medium delivers packets by indicating a START, carrying on with three or
more DATA indications and concluding with an END. The synchronisation channel
Activity is used for this purpose together with a shared variable that indicates
the type of activity occurring. Sometimes noise might be generated in which case
a START will be followed immediately by an END indication. Finally messages
may be corrupted in which case one or more DATA indications will set the variable
corrupted to true.

Some basic properties that the medium layer respects are presented in Table 4.
Similar properties hold for all packets transmitted through the Medium layer.

A[] Medium.Transmitting and msg.pType==PT
imply Medium.lastMessage.pType==PT

and Medium1.lt>=Vst)

If a token is transmitted, then someone
has offerred it before VST time

Medium.Receiving and msg.pType==PT
-> Medium.Transmitting and msg.pType==PT
and Medium.lt>=Vst

Alternatively, if a token is offerred, then
it will eventually be transmitted

Table 4. Some basic properties of the medium layer

668 N. Petalidis

lt:=0,
i=0,
activityType=3

lt:=0,
i=0,
activityType=3

i=i+1,
lt=0,
activityType=START

inReceiver :=msg.receiver,
i=0,
lt:=0,
activityType=1

i=i+1,
lt=0,
activityType=START

lt:=0,
inReceiver=0,
i=0,
activityType=3

activity[i]!

lt:=0,
i=0,
activityType=2

lt:=0,
i=0,
activityType=3,
isCorrupted=false

i=0,
lt=0,
activityType=3

i=i+1,
lt=0

i=0,
lt=0,
activityType=3

i=i+1,
lt=0

i=i+1,
lt=0,
activityType=DATA

activity[i]! activity[i]!

fromLink[i]!

activity[i]!

toLink?

activity[i]!

fromLink[inReceiver]!

i==msg.sender && i<numOfLMs

i==numOfLMs

i<numOfLMs

i==msg.sender && i<numOfLMs

i<numOfLMs && i!=msg.senderi<numOfLMs && i!=msg.sender

i==numOfLMs

Transmitting

Receiving

broadcastTD

i==numOfLMs

i<numOfLMs

Idle

lt<=Vst

i=i+1,
lt=0,
activityType=DATA,
isCorrupted=temp

msg.pType!=VAR && lt>=Vst

lt:=0,
i=0,
activityType=3

i<numOfLMs && i!=msg.sender

(msg.pType==VAR || msg.pType ==CL || msg.pType ==SR) && lt>=Vst

i=i+1,
lt=0,
activityType=END

i=0,
lt:=0,
activityType=START

i=i+1,
lt=0,
activityType=END

i==numOfLMs

msg.pType==TD && lt>=Vst

i==msg.sender && i<numOfLMs
i==numOfLMs

i==numberOfNodes

i<numberOfNodes && i!=msg.sender

i==msg.sender && i<numberOfNodes

Fig. 5. The timed automaton representing the Medium Layer

5.4 The Network Management Layer

The network management layer transmits only two messages and thus its set of
messages is:

ΣNL = {ON, OFF}

and
Out(ΣNL) = ΣNL.

The automaton itself is very simple. It consists of two states only. The automaton
can turn on or off a scheduler. The only requirement is that it does not do that
infinitely often, but there is a delay of VMDC before turning off a scheduler.

6 FORMAL VERIFICATION

In the previous section the formal specification in the form of a timed automaton for
each layer was given. Initially the automata were proved to satisfy their respective
requirements. Their combined behaviour was examined next.

If there had been a separate definition for the service which the data-link layer
ultimately expects from the scheduling layer, the verification process would have
tested whether the combined behaviour of the scheduling and the medium provided
that service. Unfortunately such a definition does not exist. In any case, it is worth
investigating the service which the data-link layer can expect.

The important properties that probably constitute what can be considered to be
the core of the service expected by the scheduling layer are stated informally below
and their corresponding formulas can be found in Table 5.

Verification of a Scheduling Protocol 669

1. There can be no deadlock on the system.

2. If there is a scheduler online, then a DLE will eventually be offered a token.

3. At anytime, at most one DLE is in possession of token.

A[] not deadlock

A<> (!SL1.Off || !SL2.Off)

imply (DLE1.hasToken || \ldots || DLE10.hasToken)

DLE1.hasToken -> (DLE2.noToken and \ldots and DLE10.noToken)

\ldots

DLE10.hasToken -> (DLE1.noToken and \ldots and DLE9.noToken)

Table 5. Some basic properties that the fieldbus network respects

Although no major problems were discovered it was nevertheless necessary to
interpret the informal description in order to decide how to best formalise a concept.
For example the informal specification would state that immediately after a scheduler
assumes scheduling responsibilities it will start circulating the token without clearly
defining that immediately actually meant just after the minimum inter-PDU delay
(VMID) has expired. In addition, the specification was not clear about the timing
restrictions concerning the delegation of a token immediately after the reception of
a TL packet and only after cross-referencing several sections of the documentation
it was possible to extract the necessary information. Furthermore, the specification
did not make clear in some cases that activity resulting from noise on the link should
not be taken under account.

Various network configurations were examined, with emphasis on the more com-
mon configurations of up to three LM nodes, since most fieldbus topologies rarely
have more than two link masters. Models that allow for the presence of noise on the
link and packet corruption were also analysed. Some of the configurations tested are
presented in Table 6. Note how the resulted state-space is effected by changing the
allowed values of token holding time: VDMDT denotes the minumum token holding
time, and when it differs from the default token holding time VDTHT the range of
the periods for which a node can hold the token greatly increases and subsequently
both the state-space and the memory required to keep the state increase.

Regarding the verification procedure itself, several notes can be made. For
a start the ability of token delegation more than once in the same cycle of to-
ken circulation to the same node greatly increased the resulted state-space of the
model. The reason for this was the introduction of arrays (e.g. VRTHA) that stored
for each DLE the time remaining for a subsequent token delegation. Similarly, in-
clusion of the request/response protocol for node activation required arrays to keep
track of the link’s live list and increased the size of the resulted state-space. One
solution was to remove the arrays from the state-space by declaring them as meta-
variables where possible. This of course assummed that they were not used in guard

670 N. Petalidis

expressions. The difference in the generated space is presented in Table 62. An-
other technique that proved useful during validation was the explicit declaration of
the allowed ranges for all integer variables. Thus, during the development of the
model, any resulted out-of-bounds assignments indicated errors in our implemen-
tation which would otherwise be difficult to uncover. Finally, the allowed integer
range of UPPAAL [−32 768, 32 767] hindered the use of stopwatches for modelling
clock drifts. The reason was that to model a clock drift of i µsec for every sec it
would have been necessary to use a timer t and add an invariant such that t ≤ i in
a location. But then when another invariant was required to say for example that
a TD packet needed to be transmitted every 51.2 sec then that invariant would have
to state that t ≤ 51.2 × 106µ sec; but that would have exceeded the allowed range
of integer variables.

LMs DLEs VRTHA Corruption VDTHT States Memory Time
Noise De-
tection

6=
VDMDT

Resident/Virtual
(MBytes)

2 6 Y N N 47299 374 829/1 670 2640.9 s
2 6 N (meta) N N 102 266 7.8/28.2 6.147 s
2 6 N (meta) Y N 230 239 104.3/246 9.730 s
2 6 N (meta) Y Y 1855 548 185/424 1410.4 s
2 20 N (meta) N N 339 374 30.6/63.3 83.92 s
2 20 N (meta) Y N 854 309 52.6/109.7 144.05 s
2 20 N (meta) Y Y 8201 003 818/1085 10 394.4 s
3 20 N (meta) N N 3354 546 142/286 897.03 s
3 20 N (meta) Y N 11 469 908 378.9/765 3 462.35 s
3 20 N (meta) Y Y 108 642 391 1 630/2 330 86 252 s
3 30 N (meta) N N 4851 107 245/496 2 369.02 s
3 30 N (meta) Y N 16 919 216 671.7/1 340 9 761.04 s

Table 6. Some of the configurations modelled and relative statistics proving
A[] not deadlock

7 CONCLUSIONS

This paper has presented a proof for the scheduling procedures found in a number
of fieldbus systems. The proof was derived by a formal model where the set of
schedulers was considered as a layer that provides services to the layers above.
A network with a changing topology was also assumed.

Clearly, any formal model and formally specified system relies upon a set of
assumptions. The assumptions made for this model were described previously. Fur-
thermore two other assumptions were made: that the schedulers are not continuously
turned on and off and that packets (and thus transmission times) have equal length.
The first hypothesis is not unreasonable and the second one can be relaxed affect-
ing, of course, the resulted state-space. Verification was also carried out with the
medium corrupting messages but it would have been more realistic to try a medium

2 All measurements were made on a T8300 Intel Processor, with 3GB of RAM, running
Windows Vista Business Ed. SP1 and UPPAAL ver. 4.1

Verification of a Scheduling Protocol 671

that only corrupts messages with certain probabilities. To do that we expect to
experiment in the near future with models based on weighted probabilistic timed
automata.

REFERENCES

[1] Fieldbus Foundation, Ed. FF-822: Data Link Layer Protocol Specification. Fieldbus
Foundation, 1995.

[2] ISA, Editor. ISA-50.02, Part 4-1997 Fieldbus Standard for Use in Industrial Control
Systems. Part 4: Data Link Protocol Specification. ISA, 1997.

[3] Durante, L.—Sisto, R.—Valenzano, A.: Formal Specification and Verification

of the Real-Time Scheduler In FIP. In IEEE International Workshop on Factory
Communication Systems, 1995, pp. 99–106.

[4] Mariño, P.–Poza, F.–Doḿınguez, M.A.—Nogueira, J. B.: Link Level Formal
Specification for Industrial Communication Networks. In IECON Proceedings, Vol. 1,
1998, pp. 226–231.

[5] Juanole, G.—Gallon, L.: Formal Modelling and Analysis of a Critical Time

Communication Protocol. In IEEE International Workshop on Factory Communica-
tion Systems, 1995, pp. 107–115.

[6] Larsen, K. G.—Pettersson, P.—Yi, W.. UPPAAL in a Nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer, Vol. 1, October 1997, No. 1–2, pp. 134–152.

[7] David, A.—Behrmann, G.—Larsen, K.G.—Yi, W.: A Tool Architecture for

the Next Generation of UPPAAL. In 10th Anniversary Colloquium Formal Methods
at the Cross Roads: From Panacea to Foundational Support, LNCS 2003.

[8] David, A.—Yi, W.: Modelling and Analysis of a Commercial Field Bus Protocol.
In 12th Euromicro Conference on Real-Time Systems, 2000, pp. 165–172.

[9] Malik, R.—Mühlfeld, R.: A Case Study in Verification of UML State-Charts:
The PROFIsafe Protocol. Journal of Universal Computer Science, Vol. 9, 2003, No. 2,

pp. 138–151.

[10] Brandao, S.—da Cunha, M. J.—Pinotti, M.: Fieldbus Control System Project
Support Tool Based on Experimental Analysis and Modelling of Communication Bus.
In IEEE International Conference on Industrial Technology, Vol. 2, 2004, pp. 787–792.

[11] Limal, S.—Potier, S.—Denis, B.—Lesage, J. J.: Formal Verification of Re-
dundant Media Extension of Ethernet Powerlink. In IEEE Conference on Emerging

Technologies and Factory Automation, September 2007, pp. 1045–1052.

[12] Rodriguez-Navas, G.—Proenza, J.—Hansson, H.: Using UPPAAL to Model
and Verify a Clock Synchronization Protocol for the Controller Area Network. In
10th IEEE Conference on Emerging Technologies and Factory Automation, Vol. 2,
September 2005, pp. 495–502.

[13] Leen, G.—Heffernan, D.: Modelling and Verification of a Time-Triggered Net-
working Protocol. In International Conference on Networking, International Con-
ference on Systems and International Conference on Mobile Communications and
Learning Technologies, 2006, pp. 178–188.

672 N. Petalidis

[14] Rodriguez-Navas, G.—Proenza, J.—Hansson, H.: Modelling and Verification

of Master/Slave Clock Synchronization Using Hybrid Automata and Model-Checking.
In ICFEM, 2007, pp. 307–326.

[15] Bonet, M.—Donaire, G.—Proenza, J.: Modelling MajorCAN with UPPAAL.

In IEEE Conference on Emerging Technologies and Factory Automation, 2007,
pp. 1404–1407.

[16] Hanssen, F.—Mader, A.—Jansen, P.G.: Verifying the Distributed Real-Time

Network Protocol RTnet using UPPAAL. In 14th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
September 2006, pp. 239–246.

[17] Alur, R.—Dill, D.: Automata for Modelling Real-Time Systems. Theoretical

Computer Science, Vol. 126, April 1994, No. 2, pp. 183–236.

[18] Bengtsson, J.—Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In
W. Reisig and G. Rozenberg (Eds.), Lecture Notes on Concurrency and Petri Nets,

LNCS 3098. Springer-Verlag 2004.

[19] Behrmann, G.—David, A.—Larsen, K.G.: A Tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini (Eds.), Formal Methods for the Design of Real-Time

Systems, 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, LNCS, No. 3185, pp. 200–236,
Springer-Verlag 2004.

[20] Lam, S. S.—Udaya, S. A.: Understanding Interfaces. In K. R. Parker and
G. A. Rose (Eds.), Formal Description Techniques IV, pp. 165–184, IFIP 1992.

[21] Vissers, C.—Logrippo, L.: The Importance of the Service Concept in the Design

of Data Communications Protocols. In M. Diaz (Ed.), Protocol Specification, Testing
and Verification, Volume V, pp. 3–17, 1986.

Nicholaos Petalidis is a consulting software engineer. Since
2004, he has been teaching software engineering at the Techno-
logical Educational Institute of Serres, at the Department of
Informatics and Communications. He received his B. Sc. de-
gree in computer science from the University of Crete, Greece
in 1994, and his Ph. D. degree from the University of Brighton,
UK in 1999. His research interests include software development
methodologies and formal methods for protocol specification and
verification.

