
Computing and Informatics, Vol. 27, 2008, 249–259

A SCALABLE INTERACTIVE PARALLEL
COMPUTING ENVIRONMENT FOR PYTHON

Sudarshan Raghunathan

Interactive Supercomputing, Inc.

135 Beaver Street

Waltham, MA 02452, USA

e-mail: rsudarshan@interactivesupercomputing.com

Abstract. Modern open source high-level languages such as R and Python are in-
creasingly playing an important role in increasing programmer productivity when
programming high-performance computers. In this article, we describe Python
Star-P, a high-level interactive parallel programming environment in Python. We
discuss the architecture of the environment and the programming model along with
a number of examples. We also describe the performance of the examples on a clus-
ter of multi-core machines. Finally, we compare our environment with that of other
existing parallel computing tools for Python and describe the advantages of our
model over others.

1 INTRODUCTION

Star-P is a parallel computing environment that bridges high-level “desktop-orien-
ted” languages such as MATLAB R©, Python and R to high-performance computers.
While many of these environments already have bindings to communication libraries
such as Twisted or MPI, one of the key advantages of Star-P is that a user can
parallelize existing serial applications written in very high-level languages without
having to worry about thorny issues in traditional parallel programming such as data
distributions, task allocation, load balancing, message passing and synchronization.

The services for parallel programming in Star-P are achieved via three me-
chanisms: a partitioned global address space containing primitives for indexing and
operating on distributed objects, interfaces to a number of existing high-performance
libraries for handling dense and sparse linear algebra, signal processing and parallel
I/O operations, and finally a mechanism for users to plug in legacy serial and parallel
libraries written in languages such as C, C++ and Fortran.



250 S. Raghunathan

1.1 Outline

We will first provide a brief overview of the Star-P architecture followed by a de-
scription of the parallel programming model (such as the model for creating and
operating on distributed arrays and porting existing serial code to run in parallel)
under Python Star-P. Then, we describe the implementation of a few applications
in both serial and parallel, and present performance results on running the bench-
marks on clusters of multi-core machines. Finally, we describe a few other parallel
programming environments in Python and describe how Star-P resembles and differs
from these.

2 THE STAR-P ARCHITECTURE

As illustrated in Figure 1, Star-P is architected as a client-server system: the client
interfaces with the user’s high-level desktop computing environment and the server
interfaces with the high-performance computer and provides language-neutral ser-
vices for managing and operating on global objects. The user can continue to use
the existing desktop environment to prototype his or her application on small-sized
problems and use Star-P to transparently migrate the application to the super-
computer. At this point, the Star-P client intercepts function calls in the serial
application and dispatches them to the server for parallel execution. The Star-P
server in turn provides a rich set of optimized primitive operations on large data sets
and supports multiple parallel modes of execution such as data and task parallelism.

Fig. 1. Client-Server architecture of the Star-P platform

At present, there exist Star-P client interfaces to three high-level languages:
MATLAB R© (or M), Python and R. An important point to note is that even though
Star-P supports multiple languages, it does not impose a common style of program-
ming across the languages and instead naturally adapts to whatever client environ-
ment it is plugged into. For example, the syntax and semantics for operations on



A Scalable Interactive Parallel Computing Environment for Python 251

distributed matrices in M is inherently different from the corresponding syntax and
semantics under Python and R.

2.1 Python and Python Star-P

Python [1] is a high-level language created by Guido Van Russom. Natively, Python
does not have data types and containers such as matrices and lacks linear algebra
and signal processing functions. Instead, these are added to the language through
Python extension modules. Currently, the de facto Python module for numerical
computing is NumPy [2] authored by Travis Oliphant and others.

The Star-P package in Python is an extension module that can be imported
into an existing Python installation just like any of the modules in the Python
standard library. The syntax and semantics in Star-P Python closely model those
in NumPy. In the next few sections, we briefly describe the parallel programming
model (distributions and how they propagate for data parallel operations as well as
a mechanism for executing task parallel loops).

2.1.1 Parallel Programming Model in Python Star-P

The basic premise of the model is to maintain compatibility in syntax with serial
codes written using the NumPy module. In most cases, the user must not be bur-
dened with having to think “in parallel”, keep track of distributions or worry about
which portions of the code runs in serial and which in parallel. This allows users
with a large existing serial application to port it to run in parallel with the least
amount of effort.

A user can start using the Star-P Python simply by importing the Star-P module
(using import starp). Most of the commonly used matrix constructors and oper-
ations available in NumPy are then available to the user. For example, to create
a 100 element one dimension vector in NumPy, one would use:

import numpy

x = numpy.random.rand(100,)

whereas to create a one-dimensional distributed vector in Star-P, one would use:

import starp

X = starp.numpy.random.rand(100,)

or more succinctly as

import starp.numpy

X = numpy.random.rand(100,)

Many of the sub-packages in NumPy (such as linalg for linear algebra ope-
rations and fft for signal processing functions) and operators (element-wise unary
and binary operators, reduction operators and indexing) are also available in Star-P
and work in the same manner as their serial counterparts.



252 S. Raghunathan

For example, in the previous example, to compute the maximum element, one
would use m = numpy.max(x) in NumPy vs. M = starp.numpy.max(X) in Star-P
Python.

In fact, for many simple applications, parallelizing is a matter of replacing
import numpy with import starp, starp.numpy as numpy and adding a state-
ment to connect to the server.

Although the syntax and semantics of Star-P Python closely model NumPy,
the Star-P module provides addition functionality not available in NumPy. Chief
among these are the facilities for transferring data back and forth from the client to
the server, parallelizing loops with no loop-carried dependencies (the Star-P PPEVAL

construct) and commands for parallel I/O which are discussed in more detail later.

2.1.2 Creation and Propagation of Parallelism

One of the key concepts in Star-P is the notion that parallelism is “infectious”: once
a distributed object is created, all subsequent operations involving it run in parallel
and produce other distributed objects; the only exceptions to this rule are when
the result is too small to operate efficiently in parallel and when the user explicitly
destroys parallelism by converting the distributed object into a non-distributed one.

In Star-P Python, distributed inputs are created using the constructors modeled
after their NumPy equivalents. By default, a distributed matrix is divvied up evenly
across the cores on the HPC server along its last non-singleton dimension, but
this can be explicitly over-ridden by the user. As mentioned before, operations on
distributed matrices (even when some of the operands are non-distributed) run in
parallel and produce other distributed matrices.

2.1.3 Performing Embarrassingly Parallel Computations

Star-P provides a convenient higher order function PPEVAL to apply a function in
parallel to slices of a distributed multi-dimensional array. This mechanism is most
effectively used to parallelize loops with no dependencies between the iterations.

To see how loops without any carried dependencies can be parallelized, consider
the following code segment that computes the singular values of K M ×N matrices
in NumPy:

x = numpy.random.rand(M, N, K)

y = numpy.zeros(numpy.min((M, N)), K)

for i in xrange(K):

y[...,i] = numpy.linalg.svd(x[...,i])[1]

The loop iterations are completely independent and can be executed in parallel
using the PPEVAL construct as follows:

Y = starp.ppeval(numpy.linalg.svd, x)[1]



A Scalable Interactive Parallel Computing Environment for Python 253

The result array Y is of size min(M,N)×K, each column of which contains the
singular values of the corresponding M ×N slice of the array x.

By default, each of the arguments to the function being evaluated is split among
the iterations along the last non-singleton dimension (for example, two-dimensional
arrays are divided by columns, three-dimensional arrays are divided along the third
dimension, etc.). If the iterations need to be performed along a different dimension,
the dimension can be explicitly specified using the PPSPLIT command. Moreover,
read-only objects that must be available in their entirety to each iteration in the
loop can be tagged using the PPBCAST directive.

The outputs from the invocation of a PPEVAL call are handled as follows: If
each iteration of the function being evaluated produces outputs of the same shape
then the outputs from all iterations are concatenated along the last non-singleton
dimension. However, if the outputs are of different sizes then the resulting object is
an opaque heterogeneous container. In keeping with the convention that distributed
objects on the server are never transferred to the client without explicit user input,
the outputs in either case are always distributed.

The main limitation of the PPEVAL construct is that when parallelizing loops,
the body must currently be hoisted into its own function; we are currently exploring
the possibility of automatically (or semi-automatically) transforming a loop with
no carried dependencies to run in parallel. Another limitation is that currently the
input arguments being split between the iterations are restricted to being dense
multi-dimensional arrays of double precision and complex double precision values.

3 APPLICATION EXAMPLES

In this section, we describe a few examples of how Star-P Python can be used to
implement or parallelize existing serial applications. In particular, we consider the
implementation of the HPC Challenge Class II benchmarks [6] using our environment
and demonstrate the performance on a large cluster of multicore machines.

3.1 Serial vs. Parallel Implementations

The benchmarks implemented using the Star-P environment can be run in both
serial and parallel as follows: The main method of the implementation accepts
a parameter for the number of processors to use on the server. If the number of
processes is set to 0, the NumPy module is imported and the entire benchmark runs
locally on the client; when the number of processes is non-zero, the Star-P Python
module is imported instead and the entire benchmark runs on the HPC server.

3.2 The Execution Framework

The main measurement routine is the following higher-function that runs a function
to be timed multiple times and returns the total time for the runs:



254 S. Raghunathan

def iterate_func(nr, func, *args):

"""

Execute a function, func, nr times and return the result along with

the total time taken for all the iterations

"""

t0 = time.time();

for i in xrange(0, nr):

out = func(*args)

return (out, time.time() - t0)

3.3 High-Performance LINPACK

The High-Performance LINPACK benchmark measures the performance of solv-
ing a dense linear system using Gauss Elimination with partial pivoting. Our
implementation of the benchmark creates an N × N matrix, a length N vector
and calls the framework with the underlying linear solve function (using LAPACK
in the case of serial computations and custom parallel solver when running under
Star-P).

def run_hpl(n, nr, tol=16):

"""

Run the High-performance LINPACK test on a matrix of size n x n, nr

number of times and ensures that the the maximum of the three

residuals is strictly less than the prescribed tolerance (defaults

to 16).

This function returns the performance in GFlops/Sec.

"""

a = numpy.random.rand(n, n);

b = numpy.random.rand(n, 1);

x,t = iterate_func(nr, numpy.linalg.solve, a, b)

r = numpy.dot(a, x)-b

r0 = numpy.linalg.norm(r, inf)

r1 = r0/(eps * numpy.linalg.norm(a, 1) * n)

r2 = r0/(eps * numpy.linalg.norm(a, inf) *

numpy.linalg.norm(x, inf) * n)

performance = (1e-9 * (2.0/3.0 * n * n * n + 3.0/2.0 * n * n) *

nr/t)

verified = numpy.max((r0, r1, r2)) < 16

if not verified:

raise RuntimeError, "Solution did not meet the prescribed



A Scalable Interactive Parallel Computing Environment for Python 255

tolerance %d"%tol

return performance

3.4 Fast Fourier Transform

The FFT benchmark creates a one-dimensional vector A of length N and calls the
underlying FFT function in NumPy when running in serial (which in turn calls
FFTPACK) or Star-P (which calls optimized parallel FFT routines). The driver
also verifies that the result of calling the inverse FFT returns back the original
vector within machine precision. The function then returns the performance of the
FFT function in Star-P in GFlops.

def run_fft(n, nr, tol=16):

"""

Run the one-dimensional FFT benchmark on a vector of size n, nr

number of times and verifies that the inverse transforms recreates

the original vector upto a tolerance, tol (defaults to 16).

This function returns the performance in GFlops/sec.

"""

a = numpy.random.rand(n,1)

b, t = iterate_func(nr, fft.fft, a)

log2n = math.log(n)/math.log(2)

performance = 1e-9 * 5.0 * n * log2n * nr/t

verified = numpy.linalg.norm(a - (numpy.fft.ifft(b))) /

(eps * log2n) < tol

if not verified:

raise RuntimeError, "Solution did not meet the tolerance %d"%tol

return performance

3.5 Embarrasingly Parallel Stream Addition

The stream benchmark creates a scalar s and two random vectors, A and B of
length N and times the computation of the SAXPY expression, C = s×A+B. Our
implementation first creates the two vectors and the scalar. An anonymous function
representing the SAXPY computation along with the input vector is then passed to
the framework function to measure the performance over multiple runs.

def run_epstream(n, nr):

"""



256 S. Raghunathan

Run the embarrasingly parallel stream benchmark on vectors of size

n, nr number of times.

This function returns the performance of the benchmark in

GFlops/second.

"""

s = numpy.random.rand(1);

a = numpy.random.rand(n);

b = numpy.random.rand(n);

c,t = iterate_func(nr, lambda s, a, b: s*a+b, s, a, b)

performance = (1e-9) * 24.0 * nr * n / t

return performance

Note that operations on Star-P distributed arrays work in a manner identical
to NumPy; for a distributed multi-dimensional array, X, a * X for a being a scalar
scales each element of X by a and X + Y for two Star-P distributed arrays returns
an element-wise sum of the arrays.

3.6 Performance

We timed the performance of our implementations on a 32-node cluster at San
Diego Supercomputing Center composed of quad core Intel Xeon 5 140 processors,
each with 8GB of main memory and connected via an Infiniband network. The
results on running the benchmarks are summarized below:

Number LINPACK FFT Stream
of Processes (Gflops/sec) (Gflops/sec) (Gflops/sec)

16 50.7 35.6 17.9

32 98.9 74.0 35.6

64 166.0 152.6 70.8

96 254.2 232.5 106.5

128 300.0 139.5

In each case, the size of the problem was fixed in accordance to the guidelines
in the HPC Challenge specification [6] (for example, for HPL, the total memory of
the problem was chosen as half the available system memory).

As seen in the above table, the benchmarks scale close to linearly with increasing
number of processes for all the implemented cases, even though they were imple-
mented using only a few lines of code in each case.



A Scalable Interactive Parallel Computing Environment for Python 257

3.6.1 Other Applications

Apart from the small benchmarks implemented in this article, Star-P can be used to
implement real world applications in financial engineering [7], life sciences [8], defense
and intelligence and [9] other areas. In most of these cases, users not previously
familiar with low-level parallel computing principles have been able to easily and
effectively parallelize critical applications that could not have run on a desktop
computer and would have taken a substantial amount of effort to parallelize using
tradition techniques such as message passing. More examples of user successes for
non-benchmark applications can be found in [10].

4 RELATED WORK

There are a number of extension modules that provide facilities for parallel program-
ming in Python. Many of them such as PyMPI [11], MPI4Py [12] and MyMPI [13]
wrap MPI libraries on top of a standard Python interpreter. While this approach has
the advantage that users with existing knowledge of MPI can prototype parallel pro-
grams inside Python, the main disadvantage is that this model is still significantly
hard to use for programmers with little or no experience with message passing.
Moreover, all the classic issues associated with classical parallel programming (such
as deadlocks and race conditions) still exist using these approaches. Another disad-
vantage of wrapping MPI libraries in Python is that it is relatively hard to interface
with existing parallel libraries written in C or Fortran.

A different approach to interactive parallel programming in Python is
IPython1 [14] that is based on a client-server architecture similar to Star-P. IPython1
allows a user to asynchronously execute commands from a single controller (akin to
the Star-P client) to multiple engines (akin to the processes in the Star-P server).
The programming model in IPython1 allows a user to perform embarrassingly paral-
lel computations in a manner similar to the PPEVAL construct in Star-P, but in order
to perform computations that require communication between the engines, the user
must explicitly use message passing like the other solutions discussed above. In con-
trast, with Star-P, the embarrassingly parallel computations can be performed using
PPEVAL and computations that require communication can be constructed out of the
dozens of parallelized primitive operations on distributed arrays without requiring
any knowledge of message passing. Moreover, the Star-P client is fully integrated
and can be used in conjunction with the IPython interpreter.

5 CONCLUSIONS AND FURTHER WORK

In this article, we described an interactive parallel computing environment for
Python. The programming model for Star-P Python provides a good balance be-
tween productivity and performance and makes it very convenient to parallelize
existing numerical serial applications written using the NumPy package without re-
quiring any knowledge of low-level parallel programming primitives such as message



258 S. Raghunathan

passing . We also described the implementation of a sample set of benchmarks
along with representative performance and scaling results on a cluster of contempo-
rary multicore machines.

In future versions of Star-P Python, we plan to support for additional distributed
data types in addition to multi-dimensional matrices and add more features in the
PPEVAL construct such as facilities for load balancing.

Acknowledgements

We would like to thank D. J. Choi and Nancy Wilkins-Diehr of San Diego Supercom-
puting Center for providing us access to their cluster for running our benchmarks.

REFERENCES

[1] van Rossum, G.—Drake, F. L.: Python Reference Manual, Release 2.5.1. http:

//docs.python.org/ref/ref.html.

[2] Oliphant, T.E.: Guide to NumPy. http://www.tramy.us/.

[3] Interactive Supercomputing, Getting Started with Star-P for Python.
http://www.interactivesupercomputing.com/support/content/pdf/

PyGettingStartedGuide.pdf.

[4] Interactive Supercomputing, Star-P for Python User Guide. http://www.

interactivesupercomputing.com/doc/2.5.1/pdf/ISC_Starp_Python_UG_R251.

pdf.

[5] Interactive Supercomputing, Software Development Kit Guide. http://www.

interactivesupercomputing.com/doc/2.5.1/pdf/ISC_SDK_Tutorial_R251.pdf.

[6] Dongarra, J.—Luszczek, P.: Introduction to the HPCChallenge Benchmark
Suite. ICL Technical Report, ICL-UT-05-01, Innovative Computing Laboratory, Uni-
versity of Texas at Knoxville, 2005.

[7] Interactive Supercomputing, Industry Solutions: Financial Engi-
neering. http://www.interactivesupercomputing.com/industrysolutions/is_

finance.php.

[8] Interactive Supercomputing, Industry Solutions: Life Sciences.

http://www.interactivesupercomputing.com/industrysolutions/is_

lifesciences.php.

[9] Interactive Supercomputing, Industry Solutions: Defense and Intelligence.
http://www.interactivesupercomputing.com/industrysolutions/is_defense.

php.

[10] Interactive Supercomputing, Customer Video Page. http://www.youtube.com/

user/ParallelLounge.

[11] Miller, P. et al.: PyMPI project. http://pympi.sourceforge.net/.

[12] Dancin, L. et al.: MPI4Py Project. http://mpi4py.scipy.org/.

[13] Kaiser, T.: MyMPI Project. http://peloton.sdsc.edu/~tkaiser/mympi.



A Scalable Interactive Parallel Computing Environment for Python 259

[14] Granger, B.—Perez, F. et al.: IPython1: Interactive Parallel Computing. http:

//ipython.scipy.org/moin/Parallel_Computing.

Sudarshan Raghunathan is a Member Technical Staff at In-
teractive Supercomputing, Inc. since 2005 where he primarily
works on the core Star-P server runtime. He received his M. Sc.
and Ph.D. in computational engineering from Massachusetts In-
stitute of Technology in 2002 and 2005, respectively. Apart from
parallel scientific computing, his research interests include multi-
resolution signal processing techniques such as wavelets, partial
differential equations, preconditioning methods and mesh adap-
tation techniques.


