
Computing and Informatics, Vol. 40, 2021, 1008–1024, doi: 10.31577/cai 2021 5 1008

IMPROVEMENT OF INFORMATION RETRIEVAL
SYSTEMS BY USING HIDDEN VERTICAL SEARCH

Suzana Stojković, Nemanja Popović, Ivica Marković

Faculty of Electronic Engineering, University of Nǐs
Aleksandra Medvedeva 14, 18000 Nǐs, Serbia
e-mail: {suzana.stojkovic, ivica.markovic}@elfak.ni.ac.rs,

nemanja.popovic@outlook.com

Abstract. The exponential growth of the number of documents in digital libraries
and on the Web calls for very intensive development of retrieval systems. One
possible architectural approach to IRS, an architecture with hidden verticals, is
proposed in this paper. In IRS with hidden verticals, documents from the searched
corpus are stored into a predefined set of classes. The user’s query is classified
before the search, and searching is done only within the corresponding class. The
performance of the proposed system is compared to the performance of standard
IRS (that contains a unique inverted index) and IRS with cluster pruning (in which
searching corpus is clustered and query is compared to the clusters’ centroids first,
then search is done only in the most similar cluster). Search time in the proposed
system is 7.9 times shorter than in the standard IRS and 1.7 times shorter than
in the system with cluster pruning. The precision of the proposed system is 2.59
times higher than the precision of the standard IRS, and 1.68 times better compared
to the IRS with cluster pruning. The recall of the proposed system is 1.09 times
smaller than the recall of the standard IRS, but it is 1.28 times better than the
recall of the IRS with cluster pruning. Based on the above results, we can say
that proposed approach reduces search time and increases search precision with
a minimal reduction in recall.

Keywords: Information retrieval systems, vertical search, classification algorithms,
cluster pruning

Mathematics Subject Classification 2010: 94-0

https://doi.org/10.31577/cai_2021_5_1008


Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1009

1 INTRODUCTION

Information retrieval systems (IRS) [1] are the systems with the goal to search
a large corpus of documents and find the documents that the user needs. The IRS
are applied wherever there is a large amount of text documents: in digital libraries,
digital encyclopedias (such as Wikipedia), Internet searching services, etc. The
corpus that is retrieved by an IRS usually grows rapidly with time. For example,
in a Web search, the retrieved corpus consists of all the documents on the Web.
New documents are being added to the Web continuously which renders finding the
information needed by the user ever harder.

There are three basic requirements that IRS should satisfy:

• The response time should be as short as possible.

• The number of selected documents should not be too large. Experiments from
2006 that are presented in [2] show that 16% of users of the Web search engines
review the first few retrieved documents, 25% of them review the first page and
27% review only the first two pages. In [3] statistics from 2020 can be found. It
shows that 75% of the users never scroll past the first page of the search engine
results.

• The retrieved documents should satisfy the user’s information needs.

To improve all these parameters, vertical search (search on the given domain) [4,
5] and cluster pruning [6, 7] are often used. The idea of both methods is to group
the documents from the corpus by any criteria, and then search a single group or
several groups only, instead of searching the whole entries corpus.

In a vertical search, the groups are predefined, and the grouping of the docu-
ments is done by using classification. Anyone using an IRS with a vertical search
should define which group (domain) or set of domains should be retrieved. If the
searching is performed only within one domain, it is a domain-specific search. In
a cross-domain search, searching is done within the given set of domains.

In IR systems with cluster pruning the groups are not predefined and the end
user has no knowledge about the groups. The groups are formed based on similarity
among the documents in the corpus by using clustering methods. During the search
time, in the first phase, the group (cluster) that is most similar to the query is
determined, and in the second phase the determined group is retrieved.

An advantage of a vertical search is that classification methods are usually mul-
tiple times faster than clustering. This advantage is especially important when the
corpus searched is permanently changing (such is the case in the web searching sys-
tems). The advantages of clustering are that a labeled training set of documents
is not required and the end user should not need know about the groups. But, if
the searching corpus is dynamic, the clustering of the whole corpus should be done
periodically because the clusters’ centroids should be moved by adding new items.

In this paper, we propose an IRS structure that combines these two methods for
improving the performance of the IR system. In the proposed system, a classification



1010 S. Stojković, N. Popović, I. Marković

method is used for grouping the documents from the corpus. The user query is
classified too, and the search is done only in the appropriate group (domain).

The paper is organized as follows. In Section 2, existing structures of the IRS
are explained. Section 3 presents the structure of the IRS with hidden verticals.
A comparison of the performance of the proposed system with a system without
grouping documents in the corpus, and with a system with clustering is shown in
Section 4. Section 5 summarizes the results of the proposed IRS structure.

2 IRS STRUCTURES

The information retrieval system accepts user queries in text form, retrieves the cor-
pus of the natural language text documents and returns the list of ranked retrieved
documents. In order to speed up the search process, the IRS creates an internal rep-
resentation of the documents known as inverted index. An inverted index contains
data about all the terms in the corpus (in which documents the term appears, how
frequently etc.), i.e., the inverted index is a structured representation of an unstruc-
tured corpus. Searching for the relevant documents is performed in a structured
inverted index, instead of in an unstructured large corpus.

The inverted index can be unique for the whole corpus, or can be divided into
partitions corresponding to groups of related documents. Depending on the method
of organization of the inverted index, three types of IRS structures can be defined:

• A standard IRS structure that uses a unique inverted index,

• An IRS structure with a vertical search in which the documents are grouped
into domains by using a classification method,

• An IRS structure with cluster pruning in which the documents are grouped
based on similarity by using a clustering method.

2.1 Standard Structure of IRS

From the observations in the previous section it follows that the major components
in an IRS are: the indexer (a component that creates the inverted index of the given
corpus) and the search engine (the component that searches the relevant documents
in the inverted index). The IRS usually contains a graphical user interface for
input of user queries and for displaying the resulting documents. The standard IRS
structure is shown in Figure 1.

Additionally, in web searching systems, a web crawler is an obligatory compo-
nent. A web crawler is a component that traverses the web and collects web pages
that make up the corpus to be searched.

2.2 Structure of IRS with Vertical Search

An IRS with a vertical search, or a domain-specific search system, contains a separate
index table for each domain. The user defines the query and the domain that will



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1011

Indexer

In
d

ex

Corpus

Search 
engine

User 
interface

Query
Retrieved 

documents
Documents

Figure 1. Standard IRS

be retrieved. Domains can be defined by different criteria, depending on the IRS
goals. In some search systems, the domains are defined by document types. For
example, the most widely used web searcher, Google, supports a vertical search in
the following domains: Images, Videos, News, Maps, Books, . . . (see Figure 2).
Searching by Google can be done without using verticals if the “Web” is selected as
the retrieved domain.

Figure 2. Google’s vertical retrieval

Other vertical retrieval systems are systems where the domains are defined by
specific topics like: biology, history, computer science, sport etc. In that case, in
order to create a different index for each domain, an IRS with a vertical search has to
include a tool for document classification into domains. The structure of that type
of vertical IRS is shown in Figure 3. For document classification in IRS, any one of
the methods for text classification can be used: Naive Bayes, SVM, neural networks,
k-nearest neighbors, logistic regression etc. (more on classification methods can be
found in [8, 9, 10] and in the references therein).

The vertical IRS always returns only documents from one domain (or from
a small number of domains). These systems are realized in one of the following
ways:



1012 S. Stojković, N. Popović, I. Marković

Indexer

D
o

m
ai

n
 

In
d

ex
 2

Corpus

Search 
engine

User 
interface

QueryRetrieved 
documents

Documents

Classifier

Pairs (Document, Domain)

D
o

m
ai

n
 

In
d

ex
 1

D
o

m
ai

n
 

In
d

ex
 N...

Domain

Figure 3. IRS with vertical search

• By classifying documents from searching corpus before or during indexing phase.
This approach is frequently used and it is built into certain open source libraries
such as Lucene [11] and Solr [12].

• By using an “intelligent” web crawler – a web crawler that collects only docu-
ments from the given domain (see for example [13, 14, 15, 16, 17]),

• Retrieval by using a standard IRS and eliminating the irrelevant documents from
the returned ones by classification based filters,

• By adding domain-specific keywords to the user’s query, and then using the
standard IRS for searching (see [18, 19]).

2.3 Structure of IRS with Cluster Pruning

The use of clustering in information retrieval is based on the Clustering Hypothesis:
“closely associated documents tend to be relevant to the same requests” [20, 21].
Clustering in an IRS can be used in two ways:

• In the preprocessing phase – assumes clustering the documents in the corpus
before searching.

• In the postprocessing phase – assumes clustering the retrieved documents after
searching.

In Figure 4 the IRS with cluster pruning (in the preprocessing phase) is shown.
In comparison with the system from Figure 2, the Classification unit is replaced by
the Clustering unit and the output of this unit are cluster specifications. To create



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1013

clusters, all the documents from the corpus should be processed. This process is very
intensive in terms of computational time and memory. The second disadvantage of
this structure is that the cluster specifications should be stored as well. Finally, this
method additionally slows down the inverted index update.

Indexer

C
lu

st
er

 
In

d
ex

 2

Corpus

Search 
engine

User 
interface

QueryRetrieved 
documents

Documents
Clustering

unit

Clusters +
Pairs (Document, Cluster)

C
lu

st
er

 
In

d
ex

 1

C
lu

st
er

 
In

d
ex

 N...

C
lu

st
er

s 
sp

ec
if

ic
at

io
n

Figure 4. IRS with cluster pruning

Clusters are represented by leaders: centroids [22] or medoids [23] (hypothetical
or real documents whose sum of distances to the other documents in the same cluster
is minimal). During the search phase, the query is firstly compared to all the leaders,
and in the second phase the search is done only in the inverted index of the cluster
corresponding to the most similar leader. If the number of clusters is

√
N (where

N is the number of documents in the corpus), similarities between the query and√
N leaders are computed, and then the similarities between the query and

√
N

(on average) documents from the appropriate cluster. In this way computational
complexity is 2

√
N in total, which is significantly less than N (in a standard IRS,

the similarity between the query and all the documents from the corpus should be
computed).

Clustering in the postprocessing phase is also discussed in many papers (for
example in [24, 25, 26]). The main disadvantage of standard IRS systems is that they
occasionally return much more irrelevant documents than relevant ones, a behavior
that is oftentimes unavoidable. For example, if the user’s query is “jaguar”, the
IRS will return documents about the animal jaguar, and documents about the car
Jaguar. If the results were clustered, one cluster would contain documents about
animals, and another about cars, which would enable user to easily decide which
documents to read.



1014 S. Stojković, N. Popović, I. Marković

3 STRUCTURE OF IRS WITH HIDDEN VERTICALS

The IRS structure with a hidden vertical search is a hybrid structure based on the
structure with a vertical search and the structure with cluster pruning. In this
structure documents are grouped by a classification method (as in the system with
verticals), but the end user is not aware of the verticals (domains). The domain of
the query is also determined by the classification method. This can be very helpful
because the end user often cannot determine the domain of his query. At times,
query classification can be very difficult. For example, many terms are common
for documents from the domain of philosophy and documents from the domain of
sociology; or for documents about statistics and documents about data mining. In
these cases, the search can be done in two or more similar domains. The classifier
can return the most likely domain, or the list of possible domains. The structure of
the IRS with hidden verticals is shown in Figure 5.

Indexer

D
o

m
ai

n
 

In
d

ex
 2

Corpus

Search 
engine

User 
interface

Query

Retrieved 
documents

Documents

Pairs (Document, Domain)

D
o

m
ai

n
 

In
d

ex
 1

D
o

m
ai

n
 

In
d

ex
 N...

(Query, Domain)

Classifier

Figure 5. IRS with hidden vertical search

The next question is how to select an optimal classification algorithm among
a huge number of existing text classification algorithms (a comprehensive overview
of text classification algorithms can be found in [27]), and constantly published
new ones (for example [28]). Specificity of the proposed system is that the same
method should be used for both document and query classification where queries are
extremely short. According to research from [3], the length of the query in 50% of the
cases is up to three words. Similar problem is solved in the research described in [29].
The paper compares the performances of classification algorithms in classification
of texts from social networks. Many of these texts are quite short, although not as
short as queries. There is no general recommendation which algorithm should be
used, but good results are reached by Random Forest and Naive Bayes algorithms.
In paper [30] we tested the set of classification algorithms in document and query
classification. Results of that research are shown in. In the paper we compared
following classification algorithms:



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1015

• Random Forest [31],

• Naive Bayes Multinomial [32, 33],

• Bernoulli Naive Bayes [32, 33] and

• SVM [34, 35].

Our experiments showed that a Naive Bayesian Multinomial classifier has about
the same results in document classification as an SVM classifier, but it was many
times better in a short query classification. Based on the properties of the compared
classifiers, we chose the NB classifier for both document and query classification.

4 COMPARATIVE ANALYSIS OF THE IR SYSTEMS
WITH DIFFERENT ARCHITECTURES

To test the performance of the proposed architecture, we developed IR systems
based on the standard architecture, based on architecture with cluster pruning, and
based on architecture with a hidden vertical search. Classification and clustering
we used from Weka 3.8.2 library [36]. The classification and clustering model was
created by using the StringToWordVector filter that gets a vector with up to 1 000
words from each document. IDFTransform and TFTransform were turned on, and
also a stop words list was used. For classification Multinomial Naive Bayesian al-
gorithm is used. For clustering, the K-means algorithm was used. This algorithm
uses a distance (dissimilarity) measure between objects for grouping them into clus-
ters. K-means is typically used with a Euclidean distance measure, but for text
documents cosine similarity is recommended as a similarity measure. Therefore, we
used a custom distance measure calculated by the formula (1 − cos θ) which is not
implemented in Weka. Indexing and searching was implemented using the Lucene
6.5.0 library [11].

For evaluating the system, we needed a corpus of classified documents and a cor-
pus of classified queries, and for each pair (⟨document⟩, ⟨query⟩) the relevance of the
document to the query needed to be assessed. There are many benchmark corpora
for document classification testing, and some corpora of documents and queries for
testing information retrieval systems, such as TREC [37], for example. But, there
are no known corpora that can be used for both purposes. Because of that, we
created the Wikipedia corpus – corpus containing 1225 documents that were taken
from the Wikipedia website, and 102 queries suitable for searching in the docu-
ment corpus. The documents and queries are classified into 10 classes: architecture,
art, biology, chemistry, computer science and informatics, literature, mathematics,
music, philosophy and physics.

We conducted the experiments on Lenovo W530, the basic parameters of which
are shown in Table 1.

First we tested the time and memory complexities of the considered systems.
To this end we measured:



1016 S. Stojković, N. Popović, I. Marković

CPU Intel® Core™ i7-3740QM CPU@2.70GHz
RAM 16GB
OS Windows 8.1 Professional (x64)
GPU NVIDIA Quadro K2000M
Hard disc 128GB SSD-Samsung SM841

Table 1. Experimental system performances

• The creation time of the inverted index including the classification/clustering
model creating time (TIIM), and excluding the model creating time (TII). In
the case of the standard information retrieval system, those two times are equal
because in that case no model is required.

• The memory needed for inverted index storage (MII),

• The average search time for the given set of queries (TS).

The results of the experiments are shown in Table 2. The rows in the table
represent following:

• IRS S – standard IRS structure,

• IRS CP10 – IRS structure with cluster pruning by using of 10 clusters. 10 is
chosen as the number of clusters because our corpus contains 10 classes.

• IRS CP6 – IRS structure with cluster pruning by using of 6 clusters. 6 is chosen
as the number of cluster because the best retrieving quality (measured by recall,
precision and F1 measure) is achieved when the number of clusters was 6.

• IRS HV – IRS structure with hidden verticals,

• IRS Type1/IRS Type2 – ratios of the specified parameters of the IRS of Type1
and the IRS of Type2, i.e.

(IRS Type1/IRS Type2 )x =
IRS Type1 x

IRS Type2 x

where x is the observed parameter. In this table:

x ∈ {TIIM , TII ,MII , TS}.

When all parameters are measured, experiments are repeated 10 times and av-
erage values are shown in the table. When searching time is measured, the time
of the search of the first query is excluded, because Lucene needed extra time for
initialization and searching time of the first query is longer then searching time of
the following queries.

From Table 2 we can see that creating the inverted index is the fastest for stan-
dard structure. This was expected because in the other two systems the documents
should be clustered or classified before indexing.



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1017

TIIM [s] TII [s] MII [MB] TS [ms]

IRS S 1.14 1.14 6.27 2.37
IRS CP10 7.91 2.41 7.41 0.48
IRS CP6 5.17 2.16 7.08 0.51
IRS HV 3.95 2.39 7.46 0.3
IRS CP10/IRS S 6.93 2.12 1.19 0.2
IRS CP6/IRS S 4.54 1.73 1.13 0.22
IRS HV/IRS S 3.46 2.1 1.19 0.13
IRS HV/IRS CP10 0.5 0.99 1.01 0.62
IRS HV/IRS CP6 0.76 1.11 1.05 0.59

Table 2. Properties of the IRS with different architectures

IRS with cluster pruning and IRS with hidden verticals need clustering/classi-
fication model to be created before inverted index generation. As is stated above,
in IRS with cluster pruning a new model should be created whenever the corpus
changes significantly. Because of that, when IRS with cluster pruning is considered,
real inverted index creating time includes clustering model generation. In the case
of IRS with hidden verticals, model creating is usually done independently of index
generation. The model should be tested before usage, and should not be changed
later. In that case, time for inverted index generation should be considered without
model generation. However, in order to test the systems under the same conditions,
the table contains the times for inverted index generation with and without model
generation for both systems. When the model creating time is included, the IRS
with cluster pruning is slower. When this time is excluded, inverted index creating
times for these two types of the systems are approximately equal. However, if
we consider the real use case, inverted index generation time of IRS with hidden
verticals excluding model generation time and inverted index generation time of IRS
with cluster pruning including model generation time should be compared. In that
case, the IRS with hidden verticals is much faster.

When it comes to storing the index, the standard structure requires the smallest
amount of storage, while the structure with cluster pruning needs 19% (13%) more
memory depending on the number of clusters. The structure with hidden verticals
uses 19% more storage than the standard structure. An increase in the used memory
space occurs because the inverted index of each cluster (or class) contains its own
dictionary, i.e., an almost identical dictionary is stored many times in these cases.
Therefore, the inverted index of a system with 6 clusters takes up slightly less
memory space. When the number of classes and the number of clusters are equal,
index storage in the system with cluster pruning and index storage in the system
with hidden verticals are approximately equal.

The parameter more important than the time to create an index and the storage
needed for an inverted index is the search time. Search time in the standard structure
is just the time of the search in the inverted index. In the structure with cluster
pruning this time consists of the time needed to perform the clustering of the search



1018 S. Stojković, N. Popović, I. Marković

query and to search a specific index. Similarly, in the structure with hidden verticals,
this time consists of the time needed to perform a classification with a Naive Bayes
Multinomial algorithm and to search in a specific index. In a situation like this,
where all the results show the time needed for an end to end search, we can see
the structure with hidden verticals performs the best, as it is 7.9 times faster than
the standard IRS, and 1.6 or 1.7 times faster than the IRS with cluster pruning
(depending whether 10 or 6 clusters are used). The reason for that is the fast
classification using the Naive Bayes Multinomial algorithm, and a search done on a
small subset of data. From a performance point of view, we can conclude that the
structure with hidden verticals is the implementation that performs the best.

Our testing corpus is very small compared to corpora in real IR systems. In
order to get an impression of what the relationship of these parameters will be
in real systems, we repeated experiments on corpora of 1 000, 2 000, 5 000, 10 000,
20 000 and 50 000 documents. Results of these experiments are shown in Figure 6.

Figure 6. Changing of IRS properties by increasing searching corpus



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1019

As it shows, the inverted index creating time that includes model creating time
exponentially grows with corpus growing in the systems with cluster pruning. If the
model is not regenerated, the creating times are approximately equal for all systems
with divided inverted index. Memory needed for index storage is changed in the
same way in all systems. With the growth of the corpus, difference in storage in the
case of the unique and divided inverted index (expressed in percentages) decreases.
The greatest improvement in the use of a divided inverted index is reflected in
the search time. Difference between search time in standard IRS and in any IRS
with divided inverted index increases significantly with increasing the corpus size.
Difference between search time in the system with cluster pruning and in the system
with hidden verticals becomes negligible with the growth of the corpus because query
clustering or classification time becomes much smaller than the inverted index search
time.

Finally, the search quality was assessed.
For the Wikipedia corpus of documents and queries, relevant and irrelevant

documents were marked and computed recall, precision and balanced F measure
(F1 measure) for the search results of each query for different architectures of IRS
were computed. The average values of these values are shown in Table 3, and
graphical preview of these results is shown in the chart in Figure 7.

Recall Precision bfF1

IRS S 0.879 0.108 0.163
IRS CP 0.631 0.167 0.232
IRS HV 0.807 0.280 0.369
IRS CP/IRS S 0.72 1.55 1.42
IRS HV/IRS S 0.92 2.59 2.26
IRS HV/IRS CP 1.28 1.68 1.59

Table 3. Evaluation of IRS systems

As we expected, when the standard IRS is used, the result list contains many
documents, but many of them are irrelevant for the query. Because of that, the IRS
with the standard structure has the best recall, but the precision is very small. If
any architecture with a divided inverted index is used, the number of the retrieved
documents is smaller, and the precision is better. By reducing the number of re-
trieved documents, the number of retrieved relevant documents is reduced, too. It
causes a reduction of the system recall.

In the case when the IRS with cluster pruning is used, achieved precision is 1.55
times better, and recall is reduced 1.39 times.

The system with hidden verticals increases precision even more with a much
smaller reduction in recall. Namely, the precision of the IRS with hidden verticals
is 2.59 times greater than the precision of the standard IRS, while the recall is 1.09
times smaller.

Results of each query were analyzed and for the queries classified correctly the
recall of the standard IRS and IRS with hidden verticals turned out to be mostly



1020 S. Stojković, N. Popović, I. Marković

Figure 7. Performance of IRS with different architectures

identical. Table 4 compares the IRS with a standard structure and the IRS with
hidden verticals only for queries that are classified correctly. In that case, it can
be seen from the table that recalls of both systems are approximately equal, but
the precision of the IRS for the system with hidden verticals is 2.61 times better.
It follows that the critical point in the proposed system is query classification and
it will be an important task for future work. Future research will include different
algorithms for documents and query classification. For query classification sereval
existing methods for short text classification can be used (such as LSA [38], Bag of
concepts [39], etc.), or especially algorithms for query classification (see for exam-
ple [40, 41, 42]).

Recall Precision F1

IRS S 0.883 0.114 0.171
IRS HV 0.858 0.298 0.393
IRS HV/IRS S 0.97 2.61 2.3

Table 4. Evaluation of IRS systems with correctly classified queries

5 CONCLUSIONS

The corpus size in retrieval systems becomes bigger and bigger (specially in web
retrieval systems). Because of that, improving the overall performance of an infor-
mation retrieval system is frequently an issue to be solved. In this paper, we propose
an IRS with hidden verticals to improve the search time and precision of the system.
Our approach consists of the classification of both the retrieved corpus of documents



Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1021

and the user’s query. Documents are classified before indexing, and index tables are
created for each class separately. When the user’s query is submitted, it is classified
too, and the search is done in the corresponding inverted index. In this way, the
search space is reduced by a factor approximately equal to the number of defined
classes.

We verified the proposed architecture of the IRS by experiments. We compared
our approach to other conventional approaches: to the IRS with a unique inverted
index (the standard IRS) and to the IRS with cluster pruning (in which documents
for searching are clustered and a separate inverted index is created for each clus-
ter).

The results showed that the standard IRS brings the best recall, but its precision
is very small and the search time is the worst. The system with cluster pruning brings
some improvements in precision and search time, at the cost of reducing the recall.
Our approach increases precision, and reduces search time, while the reduction of
recall (compared to the standard IRS) is much less. Although our method shows
a good performance in the experiments, we believe it can be further improved by
increasing the accuracy of the query classification. That should be a topic for our
future work.

Acknowledgement

This work is supported by the Ministry of Education, Science and Technological
Development of the Republic of Serbia.

REFERENCES

[1] Manning, C.D.—Raghavan, P.—Schötze, H.: An Introduction to Information
Retrieval. Cambridge University Press, Cambridge, England, 2009.

[2] iProspect: Search Engine User Behavior Study. 2006, available at: http:

//district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_2006_

SearchEngineUserBehavior.pdf.

[3] Shelley, R.: 80 SEO Statistics That Prove the Power of Search [2022 Update].
2021, available at: https://www.smamarketing.net/blog/80-seo-statistics.

[4] Chekuri, C.—Goldwasser, M.H.—Raghavan, P.—Upfal, E.: Web Search
Using Automatic Classification. Proceedings of Sixth International World Wide Web
Conference (WWW6), Santa Clara, California, USA, 1997.

[5] John, B.: The Search: How Google and Its Rivals Rewrote the Rules of Business
and Transformed Our Culture. Portfolio, New York, 2005.

[6] Chierichetti, F.—Panconesi, A.—Raghavan, P.—Sozio, M.—Tiberi, A.—
Upfal, E.: Finding Near Neighbors Through Cluster Pruning. Proceedings of
the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS ’07), 2007, pp. 103–112, doi: 10.1145/1265530.1265545.

http://district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_2006_SearchEngineUserBehavior.pdf
http://district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_2006_SearchEngineUserBehavior.pdf
http://district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_2006_SearchEngineUserBehavior.pdf
https://www.smamarketing.net/blog/80-seo-statistics
https://doi.org/10.1145/1265530.1265545


1022 S. Stojković, N. Popović, I. Marković

[7] Signitham, P.K.C.—Mahabhashyam, M. S.—Raghavan, P.: Efficiency-
Quality Tradeoffs for Vector Score Aggregation. Proceedings of the Thirtieth Interna-
tional Conference on Very Large Data Bases (VLDB ’04), Vol. 30, 2004, pp. 624–635,
doi: 10.1016/b978-012088469-8.50056-5.

[8] Duda, R.O.—Hart, P. E.—Stork, D.G.: Pattern Classification. Second Edi-
tion. Wiley-Interscience, 2000.

[9] Han, J.—Kamber, M.: Data Mining: Concepts and Techniques. Second Edition.
Elsevier, 2006.

[10] Tan, P.N.—Steinbach, M.—Kumar, V.: Introduction to Data Mining. Instruc-
tor’s Solution Manual. Pearson Addison-Wesley, 2006.

[11] Appache Lucene Core. Available at: https://lucene.apache.org/core/.

[12] Apache Solr Reference Guide. Available at: https://solr.apache.org/guide/.

[13] Chakrabarti, S.—van den Berg, M.—Dom, B.: Focused Crawling: A New
Approach to Topic-Specific Web Resource Discovery. Computer Networks, Vol. 31,
1999, No. 11–16, pp. 1623–1640, doi: 10.1016/S1389-1286(99)00052-3.

[14] Sharma, S.: Information Retrieval in Domain Specific Search Engine with Machine
Learning Approaches. International Journal of Industrial and Manufacturing Engi-
neering, Vol. 2, 2008, No. 6, pp. 643–646.

[15] Yang, S.Y.: OntoCrawler: A Focused Crawler with Ontology-Supported Website
Models for Information Agents. Expert Systems with Applications, Vol. 37, 2010,
No. 7, pp. 5381–5389, doi: 10.1016/j.eswa.2010.01.018.

[16] Putra, W.E.—Akbar, S.: Focused Crawling Using Dictionary Algorithm
with Breadth First and by Page Length Methods for Javanese and Sundanese
Corpus Construction. Procedia Technology, Vol. 11, 2013, pp. 870–876, doi:
10.1016/j.protcy.2013.12.270.

[17] Achsan, H.T.Y.—Wibowo, W.C.: A Fast Distributed Focused-Web Crawling.
Procedia Engineering, Vol. 69, 2014, pp. 492–499, doi: 10.1016/j.proeng.2014.03.017.

[18] Oyama, S.—Kokubo, T.—Ishida, T.: Domain-Specific Web Search with Keyword
Spices. IEEE Transactions on Knowledge and Data Engineering, Vol. 16, 2004, No. 1,
pp. 17–27, doi: 10.1109/TKDE.2004.1264819.

[19] Hoque, M. M.—Poudyal, P.—Goncalves, T.—Quaresma, P.: Information
Retrieval Based on Extraction of Domain Specific Significant Keywords and Other
Relevant Phrases from a Conceptual Semantic Network Structure. Proceedings of
Fifth International Workshop: Forum for Information Retrieval Evaluation (FIRE),
India International Center, New Delhi, India, 2013.

[20] Van Rijsbergen, C. J.: Information Retrieval. Second Edition. Butterworths, Lon-
don, England, 1979.

[21] Hearst, M.A.—Pedersen, J.O.: Reexamining the Cluster Hypothesis: Scat-
ter/Gather on Retrieval Results. Proceedings of the 19th Annual International
ACM/SIGIR Conference on Research and Development in Information Retrieval,
1996, pp. 76–84, doi: 10.1145/243199.243216.

[22] Jain, A.K.: Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Let-
ters, Vol. 31, 2010, No. 8, pp. 651–666, doi: 10.1016/j.patrec.2009.09.011.

https://doi.org/10.1016/b978-012088469-8.50056-5
https://lucene.apache.org/core/
https://solr.apache.org/guide/
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1016/j.eswa.2010.01.018
https://doi.org/10.1016/j.protcy.2013.12.270
https://doi.org/10.1016/j.proeng.2014.03.017
https://doi.org/10.1109/TKDE.2004.1264819
https://doi.org/10.1145/243199.243216
https://doi.org/10.1016/j.patrec.2009.09.011


Improvement of Information Retrieval Systems by Using Hidden Vertical Search 1023

[23] Kaufman, L.—Rousseeuw, P. J.: Clustering by Means of Medoids. In: Dodge, Y.
(Ed.): Statistical Data Analysis Based on the L1-Norm and Related Methods. North
Holland, Amsterdam, 1987, pp. 405–416.

[24] Kural, Y.—Robertson, S.—Jones, S.: Clustering Information Retrieval Search
Outputs. Proceedings of the 21st Annual BCS-IRSG Colloquium on Information Re-
trieval (IRSG), Glasgow, Scotland, 1999, pp. 1–9, doi: 10.14236/ewic/IRSG1999.9.

[25] Leuski, A.: Evaluating Document Clustering for Interactive Information Retrieval.
Proceedings of the Tenth International Conference on Information and Knowledge
Management (CIKM ’01), 2001, pp. 33–40, doi: 10.1145/502585.502592.

[26] Di Marco, A.—Navigli, R.: Clustering Web Search Results with Maximum Span-
ning Trees. In: Pirrone, R., Sorbello, F. (Eds.): AI*IA 2011: Artificial Intelligence
Around Man and Beyond. Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 6934, 2011, pp. 201–212, doi: 10.1007/978-3-642-23954-0 20.

[27] Kowsari, K.—Jafari Meimandi, K.—Heidarysafa, M.—Mendu, S.—
Barnes, L.—Brown, D.: Text Classification Algorithms: A Survey. Information,
Vol. 10, 2019 No. 4, Art. No. 150, doi: 10.3390/info10040150.

[28] Janani, R.—Vijayarani, S.: Automatic Text Classification Using Machine
Learning and Optimization Algorithms. Soft Computing, Vol. 25, 2021, No. 2,
pp. 1129–1145, doi: 10.1007/s00500-020-05209-8.

[29] Hartmann, J.—Huppertz, J.—Schamp, C.—Heitmann, M.: Comparing Auto-
mated Text Classification Methods. International Journal of Research in Marketing,
Vol. 36, 2019, No. 1, pp. 20–38, doi: 10.1016/j.ijresmar.2018.09.009.

[30] Popović, N.—Stojković, S.: Analysis of Classification Algorithms for Using in
Vertical Retrieval Systems. Proceedings of the 52nd International Scientific Confer-
ence on Information, Communication and Energy Systems and Technologies (ICEST
2017), Nǐs, Serbia, 2017, pp. 127–130.

[31] Ho, T.K.: Random Decision Forest. Proceedings of the 3rd International Confer-
ence on Document Analysis and Recognition, Montreal, QC, Canada, Vol. 1, 1995,
pp. 278–282, doi: 10.1109/ICDAR.1995.598994.

[32] McCallum, A.—Nigam, K.: A Comparison of Event Models for Naive Bayes
Text Classification. Proceedings in Workshop on Learning for Text Categorization
(AAAI ’98), 1998, pp. 41–48.

[33] Metsis, V.—Androutsopoulos, I.—Paliouras, G.: Spam Filtering with Naive
Bayes – Which Naive Bayes? Third Conference on Email and Anti-Spam (CEAS
2006), Mountain View, California, USA, 2006.

[34] Cortes, C.—Vapnik, V.: Support-Vector Networks. Machine Learning, Vol. 20,
1995, No. 3, pp. 273–297, doi: 10.1007/BF00994018.

[35] Vapnik, V.N.: The Nature of Statistical Learning Theory. First Edition. Springer,
New York, 1995, doi: 10.1007/978-1-4757-2440-0.

[36] Weka 3: Machine Learning Software in Java. Available at: http://www.cs.waikato.
ac.nz/ml/weka/.

[37] Text Retrieval Conference (TREC). 2016, available at: http://trec.nist.gov/.

[38] Dumais, S. T.: Latent Semantic Analysis. Annual Review of Information Science
and Technology, Vol. 38, 2005, No. 1, pp. 188–230, doi: 10.1002/aris.1440380105.

https://doi.org/10.14236/ewic/IRSG1999.9
https://doi.org/10.1145/502585.502592
https://doi.org/10.1007/978-3-642-23954-0_20
https://doi.org/10.3390/info10040150
https://doi.org/10.1007/s00500-020-05209-8
https://doi.org/10.1016/j.ijresmar.2018.09.009
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/978-1-4757-2440-0
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://trec.nist.gov/
https://doi.org/10.1002/aris.1440380105


1024 S. Stojković, N. Popović, I. Marković

[39] Sahlgren, M.—Cöster, R.: Using Bag-of-Concepts to Improve the Performance
of Support Vector Machines in Text Categorization. Proceedings of the 20th Interna-
tional Conference on Computational Linguistics (COLING ’04), Geneva, Switzerland,
2004, Art. No. 487, doi: 10.3115/1220355.1220425.

[40] Le, D.T.—Bernardi, R.: Query Classification Using Topic Models and Support
Vector Machine. Proceedings of the 2012 Student Research Workshop (ACL ’12), Jeju,
Republic of Korea, 2012, pp. 19–24.

[41] Alemzadeh, M.—Khoury, R.—Karray, F.: Query Classification Using
Wikipedia’s Category Graph. Journal of Emerging Technologies in Web Intelligence,
Vol. 4, 2012, No. 3, pp. 207–220, doi: 10.4304/jetwi.4.3.207-220.

[42] Xia, C.—Wang, X.: Graph-Based Web Query Classification. 2015 12th Web In-
formation System and Application Conference (WISA), 2015, pp. 241–244, doi:
10.1109/WISA.2015.68.

Suzana Stojkovi�c is Associate Professor at the University of
Nǐs, Faculty of Electronic Engineering, Department of Computer
Science. She is interested in spectral techniques, data mining,
natural language processing, and information retrieval.

Nemanjal Popovi�c is Ph.D. student at the University of Nǐs,
Faculty of Electronic Engineering. He is interested in data min-
ing, information retrieval, and business analysis.

Ivica Markovi�c is Teaching Assistant at the University of
Nǐs, Faculty of Electronic Engineering, Department of Computer
Science. He is interested in machine learning, data mining, nat-
ural language processing, and information retrieval.

https://doi.org/10.3115/1220355.1220425
https://doi.org/10.4304/jetwi.4.3.207-220
https://doi.org/10.1109/WISA.2015.68

