
Computing and Informatics, Vol. 36, 2017, 1088–1106, doi: 10.4149/cai 2017 5 1088

A PRACTICAL INDEX FOR APPROXIMATE
DICTIONARY MATCHING WITH FEW MISMATCHES

Aleksander Cis lak

Warsaw University of Technology
Faculty of Mathematics and Information Science
ul. Koszykowa 75, 00–662 Warsaw, Poland
e-mail: a.cislak@mini.pw.edu.pl

Szymon Grabowski

Lodz University of Technology
Institute of Applied Computer Science
Al. Politechniki 11, 90–924 Lódź, Poland
e-mail: sgrabow@kis.p.lodz.pl

Abstract. Approximate dictionary matching (checking if a pattern occurs in a col-
lection of strings) is a classic problem with applications in e.g. spellchecking, online
catalogs, and web searchers. We present a simple solution called split index, which
is based on the Dirichlet principle, for matching a keyword with few mismatches,
and experimentally show that it offers competitive space-time tradeoffs. Our im-
plementation in the C++ language is focused mostly on data compaction, which
is beneficial for the search speed. We compare our solution with other algorithms
and we show that it is faster when the Hamming distance is used. Query times
in the order of 1 microsecond were reported for one mismatch for a few-megabyte
natural language dictionary on a medium-end PC. We also demonstrate that a ba-
sic compression technique consisting in q-gram substitution can significantly reduce
the index size (up to 50 % of the input text size for the DNA sequences).

Keywords: Approximate dictionary matching, Hamming distance, k-mismatches
problem, split index, text indexing

Mathematics Subject Classification 2010: 68W32

Practical Index for the k-Mismatches Problem 1089

1 INTRODUCTION

Dictionary string matching (keyword matching, matching in dictionaries), defined
as the task of checking if a query string occurs in a collection of strings given before-
hand, is a classic research topic. In recent years, increased interest in approximate
dictionary matching can be observed, where the query and one of the strings from the
dictionary may only be similar in a specified sense rather than equal. Approximate
dictionary matching is considered a hard problem, since most useful string similarity
measures are non-transitive. Two popular measures include the Hamming distance
(later referred to as Ham), which defines the number of mismatching characters
between two strings of equal length, and the Levenshtein distance (later referred
to as Lev), which defines the minimum number of edits (insertions, deletions, and
substitutions) required for transforming one string into another. It is worth noting
that matching with mismatches (i.e. using the Hamming distance), which is the
main focus of this paper, is a very desired functionality with applications in, i.a.,
bioinformatics [22, 23], biometrics [13], cheminformatics [16], circuit design [20], and
web crawling [26].

As indexes supporting approximate matching tends to grow exponentially in k,
the maximum number of allowed errors, it is a worthwhile goal to design efficient
indexes for small k values. In this paper, we focus on the problem of dictionary
matching with few mismatches (especially one mismatch). Formally, for a collection
D = {s1, . . . , s|D|} of |D| strings (also called words, we use these terms interchange-
ably) si of total length n (where n is the length of the concatenation of all words from

the dictionary, i.e. n =
∑|D|

i=1 |si|) over a given alphabet Σ (where σ = |Σ|), I(D) is
an approximate dictionary index supporting matching with mismatches, if for any
query pattern P of length m (m = |P |) it returns all strings si from D such that
Ham(P, si) 6 k. The number of occurrences, that is, the number of such matching
strings is indicated by occ. Throughout this work the substrings are denoted as
S[i1, i2] (an inclusive range, hence, if i1 > i2, S[i1, i2] is an empty string), and all
indexes are 1-based. We also introduce the function subtr(s, i, l), which removes the
substring s[i, i+ l − 1] from s, i.e. subtr(s, i, l) = s[1, i− 1]s[i+ l, |s|] (where s1s2 is
a concatenation of two strings s1 and s2).

2 RELATED WORK

The following section describes the related work algorithms, and the summary of the
complexities of notable algorithms is provided in Table 1. If not stated otherwise,
the space complexities are expressed in words (in the sense of machine words with
size Θ(log n)).

Solutions for approximate dictionary matching can be basically divided into two
classes: the worst-case space and query time oriented, and the heuristical ones.
Notable results from the first class include the k-errata trie by Cole et al. [11],
which is based on the suffix tree and the longest common prefix structure. It can

1090 A. Cis lak, Sz. Grabowski

be used in various contexts, including full-text and keyword indexing, as well as
wildcard matching. For the Hamming distance and dictionary matching, it uses

O
(
n+ |D| (log |D|)k

k!

)
space and offers O

(
m+ (log |D|)k

k!
log log n+ occ

)
query time

(this also holds for the edit distance but with larger constants). This was extended
by Tsur [32] who described a structure similar to the one from Cole et al. with time
complexity O(m + log log n + occ) (for constant k) and O (n1+ε) space for a con-
stant ε > 0. For full-text searching with the Hamming distance, Gabriele et al. [17]
provided an index with average search time O(m+ occ) and O

(
n logl n

)
space (for

some l). Another theoretical work describing the algorithm which is similar to our
split index was given by Shi and Widmayer [31], who obtained O(n) preprocessing
time and space complexity, and O(n) expected search time (for a fixed alphabet)
if k is bounded by O(m/ logm). They introduced the notion of home strings for
a given q-gram, which is the set of strings in D that contain the q-gram in the exact
form (the value of q is set to m/(k+ 1)). In the search phase, they partition P into
k + 1 disjoint q-grams and use a candidate inspection order to speed up finding the
matches with up to k edit distance errors.

On the practical front, Bocek et al. [3] provided a generalization of the Mor and
Fraenkel [27] algorithm for k > 1 which is called FastSS. To check if two strings S1

and S2 match with up to k errors, we first delete all possible ordered subsets of k′

symbols for all 0 6 k′ 6 k from S1 and S2. Then we conclude that S1 and S2

may be in edit distance of at most k if and only if the intersection of the resulting
lists of strings is non-empty (explicit verification is still required). For instance, if
S1 = abbac and k = 2, then its neighborhood is as follows: abbac, bbac, abac,
abac, abbc, abba, abb, aba, abc, aba, abc, aac, bba, bbc, bac and bac (some of the
resulting strings are repeated and they may be removed). If S2 = baxcy, then its
respective neighborhood for k = 2 will contain, e.g., the string bac, but the following
verification will show that S1 and S2 are in edit distance greater than 2. If, however,
Lev(S1, S2) 6 2, then it is impossible not to have in the neighborhood of S2 at least
one string from the neighborhood of S1, hence we will never miss a match. The
lookup requires O

(
k(|s|a)k log(n(|s|a)k)

)
time (where |s|a is the average dictionary

word length), and the index occupies O
(
n(|s|a)k

)
space. Another practical filter

was presented by Karch et al. [21] and it improved on the FastSS method. They
reduced space requirements and the query time by splitting long words (similarly
to FastBlockSS [3] which is a variant of the original method) and storing the neigh-
borhood implicitly with indexes and pointers to original dictionary entries. They
claimed to be faster than other approaches such as the aforementioned FastSS and
a BK-tree [6]. Recently, Chegrane and Belazzougui [9] described another practical
index and they reported better results when compared to Karch et al. Their struc-
ture is based on the dictionary by Belazzougui for the edit distance of 1 (see the
following subsection). An approximate (in the mathematical sense) data structure
for approximate matching which is based on the Bloom filter was also described [25].

A permuterm index is a keyword index which supports queries with one wildcard
symbol [19]. The idea is store all rotations of a given word appended with the

Practical Index for the k-Mismatches Problem 1091

terminating character, for instance for the word text, the index would consist of the
following permuterm vocabulary: text$, ext$t, xtte, ttex, $text. When
it comes to searching, the query is first rotated so that the wildcard appears at
the end, and subsequently its prefix is searched for using the index. This could
be for example a trie or any other data structure which handles a prefix lookup.
The main problem with the standard permuterm index is its space usage, as the
number of strings inserted into the data structure is the number of words multiplied
by the average string length. Ferragina and Venturini [15] proposed a compressed
permuterm index in order to overcome the limitations of the original structure with
respect to space. They explored the relation between the permuterm index and the
Burrows–Wheeler Transform [7], which is applied to a concatenation of all strings
from the input dictionary. Moreover, they provided a modification of the last-to-first
(LF) mapping mechanism known from the FM-index (a full-text index by Ferragina
and Venturini [14], consult the original article for more information) in order to
support the functionality of the permuterm index.

2.1 The 1-Error Problem

It is important to consider methods for detecting a single error, since over 80 % of
errors (even up to roughly 95 %) are within k = 1 for the edit distance with transpo-
sitions [12, 30]. Belazzougui and Venturini [2] presented a compressed index whose
space is bounded in terms of the kth order entropy of the indexed dictionary (see Sec-
tion 3.1 for the description of this kind of entropy metric). It can be based either on
perfect hashing, having O(m+ occ) query time and 2nHk +n · o(log σ) + 2|D| log |D|
space requirements in bits (where Hk denotes the kth order entropy), or on a com-
pressed permuterm index with O(mmin(m, logσ n log log n) + occ) time (when al-
phabet size σ = logc n for some constant c) but improved space requirements. The
former is a compressed variant of a dictionary presented by Belazzougui [1] which
is based on neighborhood generation and occupies O(n log σ) bits of space and can
answer queries in O(m + occ) time. Chung et al. [10] showed a theoretical work
where external memory is used, and their focus is on I/O operations. They limited
the number of these operations to O(1 + m/(wB) + occ/B), where w is the size of
the machine word and B is the number of words within a block (a basic unit of
I/O), with the space of the proposed structure of O(n/B) blocks. In the category of
filters, Mor and Fraenkel [27] described a method which is based on the deletion-only
1-neighborhood.

2.2 The 1-Mismatch Problem

For the 1-mismatch problem (Hamming distance), Yao and Yao [33] described
a data structure for binary strings having length m with O(m log log |D|) query
time and O(m logm|D|) space requirements. This was later improved by Brodal
and Gąsieniec [4] with the results of O(m) query time with an index which occupies
O(n) space (also for binary strings). This was in turn extended with a structure

1092 A. Cis lak, Sz. Grabowski

with O(1) query time and O(|D| logm) space in a cell probe model (where only the
number of memory accesses is taken into account) [5]. Another notable example is
a recent theoretical work of Chan and Lewenstein [8], who introduced an index with
the optimal query time, i.e. O(m/w+occ) which uses additional O

(
w|D| log1+ε |D|

)
bits of space (beyond the dictionary itself), assuming a constant-size alphabet.

Name Time Complexity Space Complexity

Cole et al. [11] O
(
m+ (log |D|)k

k! log logn+ occ
)

O
(
n+ |D| (log |D|)k

k!

)
Tsur [32] O(m+ log log n+ occ) O

(
n1+ε

)
, ε > 0

Gabriele et al. [17] O(m+ occ) O
(
n logl n

)
Shi and Widmayer [31] O(n) for k = O(m/ logm) O(n)

and σ = O(1)
Bocek et al. [3] O

(
k(|s|a)k log

(
n(|s|a)k

))
O
(
n(|s|a)k

)
1-Error Problem

Belazzougui and O(m+ occ) 2nHk + n · o(log σ)
Venturini [2] + 2|D| log |D| bits
Belazzougui [1] O(m+ occ) O(n log σ) bits
Chung et al. [10] O(1 +m/(wB) + occ/B) O(n/B)

1-Mismatch Problem

Yao and Yao [33] O(m log log |D|) O(m logm|D|)
Brodal and Gąsieniec [4] O(m) O(n)
Chan and Lewenstein [8] O(m/w + occ) O

(
w|D| log1+ε |D|

)
bits

Table 1. Overview of the complexities of notable algorithms for matching in dictionar-
ies. Symbol descriptions and more information on the cited results are located in Sec-
tions 1 and 2.

3 OUR ALGORITHM

The algorithm that we are going to present is uncomplicated and based on the
Dirichlet principle, ubiquitous in approximate string matching techniques. We par-
tition each string s into k+1 disjoint pieces p1, . . . , pk+1, of average length |s|/(k+1)
(hence the name “split index”), and each such piece acts as a key in a hash table HT .
The precise size of each piece pi of string s is determined using the following for-
mula: |pi| = b|s|/(k + 1)c for i < k + 1 and |pk+1| = |s| −

∑k
i=1 |pi|. This means

that the pieces might be in fact unequal in length, e.g., 2 and 3 for |s| = 5 and
k = 1. The values in HT are the lists of words which have one of their pieces as
the corresponding key. For instance for the word table and k = 1, we would have
a relation tab → le on one list (i.e. tab would be the key and le would be the
value) and le → tab on the other. In this way, every word occurs on exactly k + 1
lists. This seemingly bloats the space usage, still, in the case of small k the occupied
space is acceptable. Moreover, instead of storing full words on the respective lists,
we only store their “missing” pieces.

Practical Index for the k-Mismatches Problem 1093

In the case of k = 1, we first populate each list with the pieces without the
prefix and then with the pieces without the suffix; additionally we store the position
on the list (as a 16-bit index) where the latter part begins. In this way, we traverse
only a half of a list on average during the search. We also support k larger than 1 –
in this case, we ignore the piece order on a list, and we store dlog2(k + 1)e bits
with each piece that indicate which part of the word is the list key. Let us note
that this approach would also work for k = 1, however, it turned out to be less
efficient.

As regards the implementation, our focus was on data compactness. In the hash
table, we store the buckets which contain word pieces as keys (e.g. le) and pointers
to the lists which store the missing pieces of the word (e.g. tab, ft). These pointers
are always located right next to the keys, which means that unless we are very
unlucky, a specific pointer should already be present in the CPU cache during the
bucket traversal. The memory layouts of these substructures are fully contiguous.
Successive strings are represented by multiple characters with a prepended 8-bit
counter which specifies the length, and the counter with the value 0 indicates the
end of the bucket or the list.

Any hash function for strings can be used, and two important considerations
are the speed and the number of collisions, since a high number of collisions results
in longer buckets, which may in turn have a negative effect on the query time
(see Section 4 for further discussion). Figure 1 illustrates the layout of the split
index.

The preprocessing stage proceeds as follows (consult Figure 2 in order to see the
pseudocode):

1. Duplicate words are removed from the dictionary D.

The following steps refer to each string s from D:

2. The word s is split into k + 1 pieces.

3. For each piece pi: if pi /∈ HT , we create a new list Lnew containing the missing
pieces (later simply referred to as a missing piece; in the case of k = 1, this is
always one contiguous piece) P = {pj : j ∈ [1, k + 1] ∧ j 6= i}. This list is then
added to the hash table (we append pi and the pointer to Lnew to the bucket).
Otherwise, if pi ∈ HT , we add the missing pieces P to the already existing list
L. The pieces are inserted at relevant positions while keeping the order of the
list which is described in previous paragraphs and in Figure 1.

As regards the search (consult Figure 3 in order to see the pseudocode):

1. The query pattern P is split into k + 1 pieces.

2. We search for each piece pi from the pattern (the prefix and the suffix if k = 1):
the corresponding list L is retrieved from the hash table or we continue if pi /∈
HT . We traverse each piece lj from L – here, we always consider only the relevant
pieces, e.g., missing suffixes if pi is a missing prefix (the details of the traversal

1094 A. Cis lak, Sz. Grabowski

Figure 1. Split index for keyword indexing which shows the insertion of the word table

for k = 1. The index also stores the words left and tablet (only selected lists containing
pieces of these two words are shown), and L1 and L2 indicate pointers to the respective
lists (L1 and L2). The first cell of each list indicates a 1-based word position (i.e. the
word count from the left) where the missing prefixes begin (k = 1, hence we deal with
two parts, namely prefixes and suffixes), and 0 means that the list has only missing
suffixes. In this case, we have “2” in L1 and left (missing suffix) and table (missing
prefix), and “0” in L2 and table (missing suffix) and tablet (missing suffix). Adapted
from Wikimedia Commons (author: Jorge Stolfi; available at http://en.wikipedia.org/
wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg; CC A-SA 3.0).

depend on the layout, consult the preceding paragraphs). If |lj| = |P |− |pi|, the
verification is performed and the result is returned if Ham(lj, PS) 6 k, where
PS is the pattern P with the piece pi removed.

3. The missing pieces that were retrieved from the lists are combined into one word
in order to present the answer.

3.1 Complexity

Let us consider the average string length |s|a, where |s|a =
(∑|D|

i=1 |si|
)
/|D|. Average

time complexity of the preprocessing stage is equal to O(kn), where k is the allowed
number of errors, and n is the total input dictionary size (as defined in Section 1).
This is because for each word and for each piece pi we either create a new list for the
missing pieces or we can add, if optimized, the pieces to the already existing list in
O(|s|a) time (let us recall that |D||s|a = n). We assume that adding a new element
to the bucket takes constant time on average, and the calculation of all hashes takes

http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg

Practical Index for the k-Mismatches Problem 1095

Preprocessing(D, k)

1 (* assume that D is a dictionary of words without duplicate entries *)
2 HT ← []
3 for each s ∈ D do
4 pSize = b|s|/(k + 1)c
5 for i ∈ {1, . . . , k} do
6 pi ← s[1 + (i− 1) · pSize, i · pSize]
7 PS = subtr(s, 1 + (i− 1) · pSize, pSize)
8 if pi 6∈ HT

9 then HT [pi]← [PS]
10 else HT [pi].append(PS)
11 (* handling the last piece of the pattern *)
12 pk+1 ← s[k · pSize + 1, |s|]
13 PS = subtr(s, k · pSize + 1, |s| − (k · pSize))
14 if pk+1 6∈ HT

15 then HT [pk+1]← [PS]
16 else HT [pk+1].append(PS)
17 return HT

Figure 2. Pseudocode description of the preprocessing procedure of the split index. The
function subtr refers to substring removal (consult Section 1 for a more precise description
of this operation).

O(n) time in total. This is true irrespective of which list layout is used (there are
two layouts for k = 1 and k > 1, see the preceding paragraphs). The occupied space
is equal to O(kn) because each piece is stored explicitly on exactly k lists and in
exactly 1 bucket.

The average search complexity is O(kt), where t is the average length of the
list. We search for each of the k + 1 pieces of the pattern P of length m = |P |,
and when the list corresponding to the piece p is found, it is traversed and at most
t verifications are performed. Each verification takes at most O(min(m, |smax|))
time where smax is the longest word in the dictionary1, but O(1) time on average.
Again, we assume that determining the location of the specific list, that is iterating
a bucket, takes O(1) time on average. As regards the list, its average length t is
higher when there is a higher probability that two words s1 and s2 from D have
two pieces of the same length l which match exactly, i.e. Pr(s1[i1, i1 + l − 1] =
s2[i2, i2 + l − 1]). Since all words are sampled from the same alphabet Σ, t de-
pends on the alphabet size, that is t = f(σ). Still, the dependence is rather in-
direct; in real-world dictionaries which store words from a given language, t will
be rather dependent on the kth order entropy of the language. This kind of en-
tropy is similar to the classical Shannon’s entropy, however, it takes the context

1 Or O(k) time, in theory, using the old longest common extension (LCE) based tech-
nique from Landau and Vishkin [24], after O(n log σ)-time preprocessing.

1096 A. Cis lak, Sz. Grabowski

Search(HT , P , k)

1 pSize ← b|P |/(k + 1)c
2 for i ∈ {1, . . . , k} do
3 pi ← P [1 + (i− 1) · pSize, i · pSize]
4 pk+1 ← P [k · pSize + 1, |P |]
5 matchSet ← ∅
6 for i ∈ {1, . . . , k + 1} do
7 if HT [pi] = NIL
8 then continue
9 L = HT [pi] (* L is a list containing the missing pieces *)

10 if i < k + 1
11 then PS = subtr(P, 1 + (i− 1) · pSize, pSize)
12 else PS = subtr(P, k · pSize + 1, |P | − (k · pSize))
13 for j ∈ {1, . . . , |L|} do
14 if |Lj | = |P | − |pi|
15 then if Ham(Lj , PS) 6 k
16 then matchSet ← matchSet ∪ Lj
17 return matchSet

Figure 3. Pseudocode description of the search procedure of the split index. The function
subtr refers to substring removal (consult Section 1 for a more precise description of this
operation).

of k preceding symbols into account. Let us note that Shannon’s entropy corre-
sponds to the case of k = 0 (see e.g. Gog [18], Section 2.1.4 for more informa-
tion).

3.2 Compression

In order to reduce storage requirements, we apply a basic compression technique. We
find the most frequent q-grams (i.e. strings of q contiguous symbols; in the literature
these are sometimes referred to as n-grams or k-mers) in the word collection and
replace their occurrences on the lists with unused symbols, e.g., byte values 128,
. . . , 255. The value of q can be specified at the preprocessing stage, for instance
q = 2 and q = 4 are reasonable for the English alphabet and the DNA, respectively.
Different q values can be also combined depending on the distribution of q-grams in
the input text, i.e. we may try all possible combinations of q-grams up to a certain
q value and select ones which provide the best compression. In such a case, longer
q-grams should be encoded before shorter ones. For example, the word compression

could be encoded as #p*s\ using the following substitution list: com → #, re → *,
co → $, om → &, sion → \ (note that not all q-grams from the substitution list
are used). Possibly even a recursive approach could be applied, although this would
certainly have a substantial impact on the query time.

Practical Index for the k-Mismatches Problem 1097

The space usage could be further reduced by the use of a different character
encoding. For the DNA (assuming 4 symbols only) it would be sufficient to use
2 bits per character, and for the basic English alphabet 5 bits. In the latter case
there are 26 letters, which in a simplified text can be augmented only with a space
character, a few punctuation marks, and a capital letter flag. Such an approach
would be also beneficial for space compaction, and it could have a further positive
impact on cache usage. The compression naturally reduces the space while increasing
the search time, and a sort of a middle ground can be achieved by deciding which
additional information to store in the index. This can be for instance the length of
an encoded (compressed) piece after decoding, which could eliminate some pieces
based on their size without performing the decompression and explicit verification.

4 EXPERIMENTAL RESULTS

Experimental results were obtained on the machine equipped with the Intel i5-
3230M processor running at 2.6 GHz and 8 GB DDR3 memory, and the C++ source
code was compiled (as a 32-bit version) with clang v. 3.4-1 and run on the Ubuntu
14.04 OS. The source code is publicly available under the following link: https:

//github.com/MrAlexSee/SplitIndex. The data sets that were used in order to
obtain the experimental results are listed in Section 6. Each evaluation was run
100 times and the results were averaged as an arithmetic mean.

One of the crucial components of the split index is a hash function. Ideally, we
would like to minimize the average length of the bucket (let us recall that we use
chaining for collision resolution), however, the hash function should be also relatively
fast because during the search it has to be calculated for each of the k + 1 pieces
of the pattern. We investigated various hash functions, and it turned out that the
differences in query times are not negligible, although the average length of the
bucket was almost the same in all cases (relative differences were smaller than 1 %).
We can see in Table 2 that the fastest function was the xxhash (available on the
Internet under the following link: https://code.google.com/p/xxhash/), and for
this reason it was used for the calculation of other results.

Decreasing the value of the load factor (LF) did not strictly provide a speedup
in terms of the query time, as demonstrated in Figure 4. This can be explained
by the fact that even though the relative reduction in the number of collisions was
substantial, the absolute difference was equal to at most a few collisions per list.
Moreover, when the LF was higher, pointers to the lists could be possibly closer to
each other, which might have had a positive effect on cache utilization. The best
query time was reported for the maximum LF value of 2.0, hence this value was
used for the calculation of other results.

In Table 3 we can see a linear increase in the index size and an exponential
increase in query time with growing k. Even though we concentrate on k = 1
and the most promising results are reported for this case, our index might remain
competitive also for higher k values.

https://github.com/MrAlexSee/SplitIndex
https://github.com/MrAlexSee/SplitIndex
https://code.google.com/p/xxhash/

1098 A. Cis lak, Sz. Grabowski

Hash Function Query Time (µs)

xxhash 0.93
sdbm 0.95
FNV1 0.95
FNV1a 0.95
SuperFast 0.96
Murmur3 0.97
City 0.99
FARSH 1.00
SpookyV2 1.04
Farm 1.04

Table 2. Evaluated hash functions and search times per query for the English dictionary
of size 2.67 MB and k = 1. A list of common English misspellings was used as queries,
maximum load factor = 2.0.

k Query Time (µs) Index Size (KB)

1 0.51 (0.05) 1 715
2 11.49 (0.53) 2 248
3 62.85 (0.83) 3 078

Table 3. Query time (with standard deviation reported in the parentheses) and index size
vs. the error value k for the English language dictionary of size 0.79 MB. A list of common
English misspellings was used as queries.

Q-gram substitution coding (the technique described in Section 3.2) provided
an expected reduction in index size, at the cost of an increased query time. Q-grams
were generated separately for each dictionary D as a list of 100 q-grams which pro-
vided the best compression for D, i.e. they minimized the size of all encoded words,
SE =

∑|D|
i=1 |Enc(si)|. For the English language dictionaries, we also considered

using only 2-grams or only 3-grams, and for the DNA only 2-grams (a maximum
of 25 2-grams) or 4-grams, since mixing the q-grams of various sizes has a further
negative impact on the query time. For the DNA, 5 000 queries were generated
randomly by introducing noise into words sampled from dictionary, and their length
was equal to the length of the particular word. Up to 3 errors were inserted, each
with a 50 % probability. For the English dictionaries we opted for the list of com-
mon misspellings, and the results were similar to the case of randomly generated
queries.

We can see the speed-to-space relation for the English dictionaries in Figure 5
and for the DNA in Figure 6. In the case of English, using the optimal (from the
compression point of view, i.e. minimizing the index size) combination of mixed
q-grams provided almost the same index size as using only 2-grams. Substitution
coding methods performed better for the DNA (where σ = 5) because the sequences
are more repetitive. Let us note that the compression provided a higher relative
decrease in index size with respect to the original text as the size of the dictionary

Practical Index for the k-Mismatches Problem 1099

0 1 2 3 4 5 6 7 8
Load factor

0.94

0.96

0.98

1.00

1.02
Qu

er
y

tim
e

(
s)

0 1 2 3 4 5 6 7 8
Load factor

5.0

5.2

5.4

5.6

5.8

6.0

6.2

In
de

x
si

ze
 (M

B)

Figure 4. Query time and index size vs. the load factor for the English dictionary of size
2.67 MB and k = 1. A list of common English misspellings was used as queries. The value
of LF can be higher than 1.0 because we use chaining for collision resolution.

increased. For instance, for the DNA dictionary of size 627.8 MB the compression
ratio was equal to 1.93 and the query time was still around 100 µs.

Tested on the English language dictionaries, favorable results were reported
when compared to methods proposed by other authors. Others consider the Lev-
enshtein distance as the edit distance, whereas we use the Hamming distance,
which puts us at the advantageous position. Still, the provided speedup is sig-
nificant, and we believe that the more restrictive Hamming distance is also an im-
portant measure of practical use. The implementations of other authors are avail-
able on the Internet (http://searchivarius.org/personal/software; https://
code.google.com/p/compact-approximate-string-dictionary/, from Boytsov
and Chegrane and Belazzougui, respectively). As regards the results reported for
the Mor–Fraenkel method and Boytsov’s Reduced alphabet neighborhood genera-
tion, it was not possible to accurately calculate the size of the index (both imple-
mentations by Boytsov), and for this reason we used rough ratios based on index
sizes reported by Boytsov for similar dictionary sizes. Let us note that we com-
pare our algorithm with Chegrane and Belazzougui [9], who published better re-
sults when compared to Karch et al. [21], who, in turn, claimed to be faster than

http://searchivarius.org/personal/software
https://code.google.com/p/compact-approximate-string-dictionary/
https://code.google.com/p/compact-approximate-string-dictionary/

1100 A. Cis lak, Sz. Grabowski

1 2 3 4 5 6
Dictionary size (MB)

0
1
2
3
4
5
6
7

Qu
er

y
tim

e
(

s)

1 2 3 4 5 6
Dictionary size (MB)

0

2

4

6

8

10

12

In
de

x
si

ze
 (M

B)

No q-grams
2-grams
3-grams
Mixed q-grams

Figure 5. Query time and index size vs. dictionary size for k = 1, with and without
q-gram coding. Mixed q-grams refer to the combination of q-grams which provided the
best compression, and for the three dictionaries these were equal to ([2-, 3-, 4-] grams):
[88, 8, 4], [96, 2, 2], and [94, 4, 2], respectively. English dictionaries and the list of common
English misspellings were used. Standard deviation values for all time measurements were
roughly in the order of 5 % of the reported values.

other state-of-the-art methods. We have not managed to identify any practice-
oriented indexes for matching in dictionaries over any fixed alphabet Σ dedicated
for the Hamming distance, which could be directly compared to our split index.
The times for the brute-force algorithm are not listed, since they were roughly
3 orders of magnitude higher than the ones presented. Consult Figure 7 for de-
tails.

We also evaluated different word splitting schemes, for instance for k = 1, one
could split the word into two pieces of different sizes, e.g., 6 → (2, 4) instead of
6 → (3, 3). However, unbalanced splitting methods caused slower queries when
compared to the regular one. As regards Hamming distance calculation, it turned
out that a naive implementation (i.e. simply iterating and comparing each character)
was the fastest one. The compiler with automatic optimization was simply more
efficient than other implementations (e.g. ones based directly on SSE instructions)
that we have investigated.

Practical Index for the k-Mismatches Problem 1101

0 100 200 300 400 500 600
Dictionary size (MB)

0

20

40

60

80

100

120

Qu
er

y
tim

e
(

s)

0 100 200 300 400 500 600
Dictionary size (MB)

0
100
200
300
400
500
600
700
800

In
de

x
si

ze
 (M

B)

No q-grams
2-grams
4-grams
Mixed q-grams

Figure 6. Query time and index size vs. dictionary size for k = 1, with and without
q-gram coding. Mixed q-grams refer to the combination of q-grams which provided the
best compression, and these were equal to ([2-, 3-, 4-] grams): [16, 66, 18] (due to compu-
tational constraints, they were calculated only for the first dictionary, but used for all four
dictionaries). DNA dictionaries and the randomly generated queries were used. Standard
deviation values for all time measurements were roughly in the order of 5 % of the reported
values.

5 CONCLUSIONS

We have presented an index for dictionary matching with mismatches, which per-
formed best for the Hamming distance of one. Its functionality could be extended
by storing additional information in the lists that contain missing parts of the words.
This could be for instance a mapping of words to positions in the document, which
would create an inverted index handling approximate matching.

Another useful extension could consist in a dedicated solution for binary al-
phabets (where σ = 2). In this case, the characters would be stored as individual
bits, which would greatly reduce the overall index size, while also making it possible
for more consecutive characters to fit into a single cache line. On the other hand,
access to each specific character would be slower (as it would require additional
bitwise operations), hence, the effect of such a layout on the query time is rather
unclear. This could be combined with the support for fixed-sized queries, since they

1102 A. Cis lak, Sz. Grabowski

2 4 6 8 10 12
Index size (MB)

0

5

10

15

20

25

30

35

Qu
er

y
tim

e
(

s)

Our method
Our method w. compression
Chegrane and Belazzougui
Boytsov
Mor-Fraenkel

Figure 7. Query time vs. index size for different methods. The method with compression
encoded mixed q-grams (consult Section 3.2). We used the Hamming distance, and the
other authors used the Levenshtein distance for k = 1. English dictionaries of size 0.79 MB,
2.67 MB, and 5.8 MB were used as input, and the list of common English misspellings was
used for queries.

are rather common in the case of binary alphabets (where they describe, e.g., a fixed
number of states of the elements in a certain system [20]). If the size of all words
in a dictionary were known, it would be possible to additionally reduce the space
requirements of the index by omitting information regarding each piece length.

The algorithm can be sped up by means of parallelization, since access to the
index during the search procedure is read-only. In the most straightforward approach
we could simply distribute individual queries between multiple threads. A more
fine-grained variation would be to concurrently operate on parts of the word after
it has been split up (the number of parts depending on the k parameter), or we
could even access in parallel lists which contain candidate prefixes and suffixes. If
we had a sufficient amount of threads at our disposal, these approaches could be
combined.

In the future, we are going to seek ways to employ the presented technique in full-
text indexed approximate pattern matching. One relevant idea can be intermediate
partitioning, that is, breaking either the pattern [28] or a q-gram from the text [29]

Practical Index for the k-Mismatches Problem 1103

into few pieces, in order to match against them in an approximate (rather than exact
in the traditional partitioning) manner.

Acknowledgement

The work was supported by the Polish National Science Centre under the project
DEC-2013/09/B/ST6/03117 (the second author).

6 DATA SETS

The following data sets were used in order to obtain the experimental results:

• iamerican – 0.79 MB, English, available from Linux packages,

• foster – 2.67 MB, English, available at: http://www.math.sjsu.edu/~foster/
dictionary.txt,

• iamerican-insane – 5.8 MB, English, available from Linux packages,

• DNA – 20-mers extracted from the genome of Drosophila melanogaster (avail-
able at: http://flybase.org/), sizes: 6.01 MB, 135.89 MB, 262.78 MB, and
627.80 MB,

• A list of common English misspellings – 44.2 KB (4 261 words), available at:
http://en.wikipedia.org/wiki/Wikipedia:Lists of common

misspellings/For machines.

REFERENCES

[1] Belazzougui, D.: Faster and Space-Optimal Edit Distance “1” Dictionary. Combi-
natorial Pattern Matching (CPM 2009). Springer, Lecture Notes in Computer Science,
Vol. 5577, 2009, pp. 154–167, doi: 10.1007/978-3-642-02441-2 14.

[2] Belazzougui, D.—Venturini, R.: Compressed String Dictionary Look-Up with
Edit Distance One. Combinatorial Pattern Matching (CPM 2012). Springer, Lecture
Notes in Computer Science, Vol. 7354, 2012, pp. 280–292, doi: 10.1007/978-3-642-
31265-6 23.

[3] Bocek, T.—Hunt, E.—Stiller, B.—Hecht, F.: Fast Similarity Search in Large
Dictionaries. Technical Report ifi-2007.02, Department of Informatics, University of
Zurich, Switzerland.

[4] Brodal, G. S.—Gąsieniec, L.: Approximate Dictionary Queries. Combinato-
rial Pattern Matching (CPM 1996). Springer, Lecture Notes in Computer Science,
Vol. 1075, 1996, pp. 65–74, doi: 10.1007/3-540-61258-0 6.

[5] Brodal, G. S.—Venkatesh, S.: Improved Bounds for Dictionary Look-Up with
One Error. Information Processing Letters, Vol. 75, 2000, No. 1, pp. 57–59, doi:
10.1016/S0020-0190(00)00079-X.

http://www.math.sjsu.edu/~foster/dictionary.txt
http://www.math.sjsu.edu/~foster/dictionary.txt
http://flybase.org/
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://doi.org/10.1007/978-3-642-02441-2_14
https://doi.org/10.1007/978-3-642-31265-6_23
https://doi.org/10.1007/978-3-642-31265-6_23
https://doi.org/10.1007/3-540-61258-0_6
https://doi.org/10.1016/S0020-0190(00)00079-X

1104 A. Cis lak, Sz. Grabowski

[6] Burkhard, W. A.—Keller, R. M.: Some Approaches to Best-Match File Search-
ing. Communications of the ACM, Vol. 16, 1973, No. 4, pp. 230–236, doi:
10.1145/362003.362025.

[7] Burrows, M.—Wheeler, D. J.: A Block-Sorting Lossless Data Compression Algo-
rithm. Technical Report 124, Digital, Systems Research Center, Palo Alto, California,
1994.

[8] Chan, T.—Lewenstein, M.: Fast String Dictionary Lookup with One Error. Com-
binatorial Pattern Matching (CPM 2015). Springer, Lecture Notes in Computer Scien-
ce, Vol. 9133, 2015, pp. 114–123, doi: 10.1007/978-3-319-19929-0 10.

[9] Chegrane, I.—Belazzougui, D.: Simple, Compact and Robust Approximate
String Dictionary. Journal of Discrete Algorithms, Vol. 28, 2014, pp. 49–60, doi:
10.1016/j.jda.2014.08.003.

[10] Chung, C. W.—Tao, Y.—Wang, W.: I/O-Efficient Dictionary Search with One
Edit Error. String Processing and Information Retrieval (SPIRE 2014). Springer,
Lecture Notes in Computer Science, Vol. 8799, 2014, pp. 191–202, doi: 10.1007/978-
3-319-11918-2 19.

[11] Cole, R.—Gottlieb, L. A.—Lewenstein, M.: Dictionary Matching and
Indexing with Errors and Don’t Cares. Proceedings of the Thirty-Sixth An-
nual ACM Symposium on Theory of Computing, ACM, 2004, pp. 91–100, doi:
10.1145/1007352.1007374.

[12] Damerau, F. J.: A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM, Vol. 7, 1964, No. 3, pp. 171–176, doi:
10.1145/363958.363994.

[13] Davida, G. I.—Frankel, Y.—Matt, B. J.: On Enabling Secure Applications
Through Off-Line Biometric Identification. Security and Privacy, IEEE, 1998,
pp. 148–157.

[14] Ferragina, P.—Manzini, G.: Opportunistic Data Structures with Applica-
tions. 41st Annual Symposium on Foundations of Computer Science (FOCS 2000),
November 12–14, 2000, Redondo Beach, California, USA, pp. 390–398, doi:
10.1109/SFCS.2000.892127.

[15] Ferragina, P.—Venturini, R.: The Compressed Permuterm Index. ACM Trans-
actions on Algorithms, Vol. 7, 2010, No. 1, Art. No. 10, doi: 10.1145/1868237.1868248.

[16] Flower, D. R.: On the Properties of Bit String-Based Measures of Chemical Simi-
larity. Journal of Chemical Information and Computer Sciences, Vol. 38, 1998, No. 3,
pp. 379–386, doi: 10.1021/ci970437z.

[17] Gabriele, A.—Mignosi, F.—Restivo, A.—Sciortino, M.: Indexing Struc-
tures for Approximate String Matching. Algorithms and Complexity (CIAC 2003).
Springer, Lecture Notes in Computer Science, Vol. 2653, 2003, pp. 140–151, doi:
10.1007/3-540-44849-7 20.

[18] Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. Ph.D.
Thesis, University of Ulm, 2011.

[19] Garfield, E.: The Permuterm Subject Index: An Autobiographical Review. Jour-
nal of the American Society for Information Science, Vol. 27, 1976, No. 5, pp. 288–291,
doi: 10.1002/asi.4630270504.

https://doi.org/10.1145/362003.362025
https://doi.org/10.1007/978-3-319-19929-0_10
https://doi.org/10.1016/j.jda.2014.08.003
https://doi.org/10.1007/978-3-319-11918-2_19
https://doi.org/10.1007/978-3-319-11918-2_19
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1145/363958.363994
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1868237.1868248
https://doi.org/10.1021/ci970437z
https://doi.org/10.1007/3-540-44849-7_20
https://doi.org/10.1002/asi.4630270504

Practical Index for the k-Mismatches Problem 1105

[20] Girard, P.—Landrault, C.—Pravossoudovitch, S.—Severac, D.: Reduc-
tion of Power Consumption During Test Application by Test Vector Ordering. Elec-
tronics Letters, Vol. 33, 1997, No. 21, pp. 1752–1754, doi: 10.1049/el:19971225.

[21] Karch, D.—Luxen, D.—Sanders, P.: Improved Fast Similarity Search in Dictio-
naries. String Processing and Information Retrieval (SPIRE 2010). Springer, Lecture
Notes in Computer Science, Vol. 6393, 2010, pp. 173–178, doi: 10.1007/978-3-642-
16321-0 16.

[22] Kurtz, S.—Choudhuri, J. V.—Ohlebusch, E.—Schleiermacher, C.—
Stoye, J.—Giegerich, R.: REPuter: The Manifold Applications of Repeat Analy-
sis on a Genomic Scale. Nucleic Acids Research, Vol. 29, 2001, No. 22, pp. 4633–4642,
doi: 10.1093/nar/29.22.4633.

[23] Landau, G. M.—Schmidt, J. P.—Sokol, D.: An Algorithm for Approximate
Tandem Repeats. Journal of Computational Biology, Vol. 8, 2001, No. 1, pp. 1–18,
doi: 10.1089/106652701300099038.

[24] Landau, G. M.—Vishkin, U.: Fast Parallel and Serial Approximate String Match-
ing. Journal of Algorithms, Vol. 10, 1989, No. 2, pp. 157–169, doi: 10.1016/0196-
6774(89)90010-2.

[25] Manber, U.—Wu, S.: An Algorithm for Approximate Membership Checking with
Application to Password Security. Information Processing Letters, Vol. 50, 1994,
No. 4, pp. 191–197, doi: 10.1016/0020-0190(94)00032-8.

[26] Manku, G. S.—Jain, A.—Das Sarma, A.: Detecting Near-Duplicates for Web
Crawling. Proceedings of the 16th International Conference on World Wide Web,
ACM, 2007, pp. 141–150, doi: 10.1145/1242572.1242592.

[27] Mor, M.—Fraenkel, A. S.: A Hash Code Method for Detecting and Correcting
Spelling Errors. Communications of the ACM, Vol. 25, 1982, No. 12, pp. 935–938.

[28] Navarro, G.—Baeza-Yates, R.: A Hybrid Indexing Method for Approximate
String Matching. Journal of Discrete Algorithms, Vol. 1, 2000, No. 1, pp. 205–239,
Special Issue on Matching Patterns.

[29] Navarro, G.—Sutinen, E.—Tarhio, J.: Indexing Text with Approximate
q-Grams. Journal of Discrete Algorithms, Vol. 3, 2005, No. 2, pp. 157–175, doi:
10.1016/j.jda.2004.08.003.

[30] Pollock, J. J.—Zamora, A.: Automatic Spelling Correction in Scientific and
Scholarly Text. Communications of the ACM, Vol. 27, 1984, No. 4, pp. 358–368,
doi: 10.1145/358027.358048.

[31] Shi, F.—Widmayer, P.: Approximate Multiple String Searching by Clustering.
Genome Informatics, Vol. 7, 1996, pp. 33–40.

[32] Tsur, D.: Fast Index for Approximate String Matching. Journal of Discrete Algo-
rithms, Vol. 8, 2010, No. 4, pp. 339–345.

[33] Yao, A. C.—Yao, F. F.: Dictionary Look-Up with Small Errors. Combinato-
rial Pattern Matching (CPM 1995). Springer, Lecture Notes in Computer Science,
Vol. 937, 1995, pp. 387–394, doi: 10.1007/3-540-60044-2 57.

https://doi.org/10.1049/el:19971225
https://doi.org/10.1007/978-3-642-16321-0_16
https://doi.org/10.1007/978-3-642-16321-0_16
https://doi.org/10.1093/nar/29.22.4633
https://doi.org/10.1089/106652701300099038
https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1016/0020-0190(94)00032-8
https://doi.org/10.1145/1242572.1242592
https://doi.org/10.1016/j.jda.2004.08.003
https://doi.org/10.1145/358027.358048
https://doi.org/10.1007/3-540-60044-2_57

1106 A. Cis lak, Sz. Grabowski

Aleksander Cis lak received his B.Sc. degree in computer
science from Lodz University of Technology in 2014 and M.Sc.
degree in informatics from TU München in 2015. His research
interests include string matching algorithms and applied graph
theory. He worked as Assistant at TU München, conducting
research in the area of graph-based behavioral malware detec-
tion, and he currently works as Assistant at Warsaw University
of Technology, with the main focus of his work being the fuzzy
cognitive maps (FCMs).

Szymon Grabowski received his M.Sc. degree from the Uni-
versity of Lodz in 1996, Ph.D. degree from AGH-UST in Cracow
in 2003, and Habilitation degree from Systems Research Institute
in Warsaw in 2011, all in computer science. His former research,
including his Ph.D. dissertation, involved nearest neighbor clas-
sification methods in pattern recognition, also with applications
in image processing. Currently, his main interests are focused
on string matching and text indexing algorithms, and data com-
pression. Some of his particular research topics include various
approximate string matching problems, compressed text indexes,

and XML compression. He has published about 100 papers in journals and conferences.
He is currently Professor at the Institute of Applied Computer Science of Lodz University
of Technology.

