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Abstract. Fuzzy clustering is useful to mine complex and multi-dimensional data
sets, where the members have partial or fuzzy relations. Among the various deve-
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loped techniques, fuzzy-C-means (FCM) algorithm is the most popular one, where

a piece of data has partial membership with each of the pre-defined cluster centers.
Moreover, in FCM, the cluster centers are virtual, that is, they are chosen at random
and thus might be out of the data set. The cluster centers and membership values
of the data points with them are updated through some iterations. On the other
hand, entropy-based fuzzy clustering (EFC) algorithm works based on a similarity-
threshold value. Contrary to FCM, in EFC, the cluster centers are real, that is, they
are chosen from the data points. In the present paper, the performances of these
algorithms have been compared on four data sets, such as IRIS, WINES, OLITOS
and psychosis (collected with the help of forty doctors), in terms of the quality of
the clusters (that is, discrepancy factor, compactness, distinctness) obtained and
their computational time. Moreover, the best set of clusters has been mapped into
2-D for visualization using a self-organizing map (SOM).

Keywords: Fuzzy clustering, fuzzy c-means algorithm, entropy-based algorithms,
self-organizing maps

1 INTRODUCTION

A cluster is usually represented as either grouping of similar data points around
a center (called centroid) or a prototype data instance nearest to the centroid. In
other way, a cluster can be represented either with or without a well-defined bound-
ary. Clusters with well-defined boundaries are called crisp clusters, while those
without such feature are called fuzzy clusters. The present paper deals with fuzzy
clustering only. Clustering is an unsupervised learning of unlabeled data, and such
property has separated it from classification, where the class-prediction is done on
unlabeled data after a supervised learning on pre-labeled data. As the training is
unsupervised in clustering algorithms, these can be safely used on a data set without
much knowledge of it. Two most important benefits of clustering are as follows:

1. easy tackling of noisy data and outliers,

2. ability to deal with the data having various types of variables, such as continu-
ous variable that requires standardized data, binary variable, nominal variable
(a more generalized representation of binary variable), ordinal variable (where
order of data is the most important criterion) and mixed variables, (that is,
amalgamation of all above) [19].

Several fuzzy clustering algorithms had been proposed by various researchers.
Those algorithms include fuzzy ISODATA, fuzzy C-means, fuzzy K-nearest neigh-
borhood algorithm, potential-based clustering, and others [21]. Recently, some more
fuzzy clustering algorithms have been proposed. For example, Fu and Medico [12]
developed a clustering algorithm to capture dataset-specific structures at the be-
ginning of DNA microarray analysis process, which is known as Fuzzy clustering by
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Local Approximation of Membership (FLAME). It worked by defining the neighbor-
hood of each object and identifying cluster supporting objects. Fuzzy membership
vector for each object was assigned by approximating the memberships of its neigh-
boring objects through an iterative converging process. Its performance was found
to be better than that of fuzzy C-means, fuzzy K-means algorithms and fuzzy self-
organizing maps (SOM). Ma and Chan [16] proposed an Incremental Fuzzy Mining
(IFM) technique to tackle complexities due to higher dimensional noisy data, as
encountered in genetic engineering. The basic philosophy of that technique was to
mine gene functions by transforming quantitative gene expression values into lin-
guistic terms, and using fuzzy measure to explore any interesting patterns existing
between the linguistic gene expression levels. Those patterns could make accurate
gene function predictions, such that each gene could be allowed to belong to more
than one functional class with different degrees of membership.

Fuzzy C-means (FCM) algorithm, one of the most popular fuzzy clustering tech-
niques, was originally proposed by Dunn [8] and had been modified by Bezdek [4].
FCM is able to determine, and in turn, iteratively update the membership values of
a data point with the pre-defined number of clusters. Thus, a data point can be the
member of all clusters with the corresponding membership values. The philosophy of
FCM has been extensively used in different fields of research [20, 1, 24, 18]. A large
number of variants of FCM algorithm had been proposed. Some of these recent
algorithms are discussed here. Sikka et al. [22] developed a modified FCM known
as MFCM to estimate the tissue and tumor areas in a brain MRI scan. Krinidis
and Chatzis [14] proposed a Fuzzy Local Information C-Means (FLICM) algorithm,
which could remove the inherent hindrances of FCM algorithm. The main features
of that algorithm were the (i) use of a fuzzy local similarity measure, (ii) shielding of
the algorithm from noise-realted hypersensitivities. Moreover, its performance was
not dependent on the empirically adjusted parameters of the conventional FCM algo-
rithm. A novel modified FCM algorithm was developed by Belhassen and Zaidi [3]
to overcome the problems faced by conventional FCM algorithm with noisy and
low resolution oncological PET data. The former was found to be less error-prone
compared to the latter.

On the other hand, entropy-based fuzzy clustering (EFC) is also a very popular
technique, in which clusters are formed by means of a similarity-threshold value [23].
By changing this value, the number and quality of clusters can be manipulated.
As an EFC is a newer clustering method, its number of reported applications is
comparatively less [17, 15, 7]. An attempt was made earlier by the authors [5],
to test the performances of EFC algorithm and their different extensions, while
carrying out clustering on three standard data sets, namely IRIS [10], WINES [11]
and OLITOS [2]. Both IRIS as well as WINES data sets are ideally clustered into
three groups. Iris data set contains 150 data items, whose first 50 elements are
known as iris setosa, the next 50 elements are called iris versicolor and the last
50 data belong to iris virginica. On the other hand, in WINES data set, there are
178 elements, which are ideally clustered into three groups – the first group contains
59 elements, the second group consists of 71 elements and there are 48 elements in
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the third group. OLITOS data set consists of 120 data items, which are distributed
among four groups containing 50, 25, 34 and 11 elements.

The present paper is a novel attempt to compare the performances of FCM
algorithm and EFC algorithm along with its proposed extensions on four data sets,
such as IRIS, WINES, OLITOS and psychosis (collected with the help of forty
doctors) in terms of quality of the clusters made and their computational time.
It is to be mentioned that the quality of the clusters has been decided based on
discrepancy factor, compactness and distinctness.

The rest of the paper is organized as follows: Section 2 explains the different
tools and techniques used in the present work. The results of these techniques are
stated and discussed in Section 3. Some concluding remarks are made in Section 4
and the scope for future work is indicated in Section 5.

2 TOOLS AND TECHNIQUES USED

The working principles of different tools and techniques used in the present work,
such as fuzzy C-means algorithm, entropy-based fuzzy clustering (EFC) algorithms
and self-organizing map (SOM), have been explained briefly in this section.

2.1 Fuzzy C-Means (FCM) Algorithm

FCM is one of the most popular fuzzy clustering techniques, which was proposed by
Dunn [8] in 1973 and eventually modified by Bezdek [4] in 1981. It is an approach,
where the data points have their membership values with the cluster centers, which
will be updated iteratively. The FCM algorithm consists of the following steps:

• Step 1: Let us suppose that M -dimensional N data points represented by xi

(i = 1, 2, . . . , N), are to be clustered.

• Step 2: Assume the number of clusters to be made, that is, C, where 2 ≤ C ≤ N .

• Step 3: Choose an appropriate level of cluster fuzziness f > 1.

• Step 4: Initialize the N × C ×M sized membership matrix U , at random, such
that Uijm ∈ [0, 1] and

∑C
j=1

Uijm = 1.0, for each i and a fixed value of m.

• Step 5: Determine the cluster centers CCjm, for j
th cluster and itsmth dimension

by using the expression given below:

CCjm =

∑N
i=1

U
f
ijmxim

∑N
i=1

U
f
ijm

. (1)

• Step 6: Calculate the Euclidean distance between ith data point and jth cluster
center with respect to, say mth dimension like the following:

Dijm = ‖(xim − CCjm)‖. (2)
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• Step 7: Update fuzzy membership matrix U according to Dijm. If Dijm > 0,
then

Uijm =
1

∑C
c=1

(
Dijm

Dicm
)

2

f−1

. (3)

If Dijm= 0, then the data point coincides with the corresponding data point of
jth cluster center CCjm and it has the full membership value, that is, Uijm = 1.0.

• Step 8: Repeat from Step 5 to Step 7 until the changes in U ≤ ǫ, where ǫ is
a pre-specified termination criterion.

2.1.1 Entropy-Based Fuzzy Clustering (EFC) Algorithm

In this algorithm, entropy values of the data points are calculated first and then the
data point having the minimum entropy value is selected as the cluster center [23]. It
is also an iterative approach, where the data points are clustered based on a threshold
value of similarity. The data points, which are not being selected inside any of the
clusters are termed as outliers. The principle of EFC algorithm is explained below.
Let us assume that there are N data points in M -dimensional [T] hyperspace, where
each data point Xi (i = 1, 2, 3, . . . , N) is represented by a set of M values (i.e.,
Xi1, Xi2, Xi3, . . . , XiM ). Thus, the data set can be represented by an N×M matrix.
The Euclidean distance between any two data points (e.g., i and j) is determined
as follows:

Dij =

√

√

√

√

M
∑

k=1

(Xik −Xjk)2. (4)

There is a maximum of N 2 distance values among N data points and out of which
NC2 distances belong to Dij (where i < j) and Dji each. Moreover, there are
N diagonal values, each of which is equal to zero (where i = j). Now, similarity
between any two points (i.e., i and j) can be calculated as follows:

Sij = e−α Dij , (5)

where α is a numerical constant. It is to be noted that the similarity value between
any two points lies in the range of 0.0 to 1.0. The value of α is calculated based on
the assumption that the similarity value Sij is set equal to 0.5, when the distance
between two data points (i.e., Dij) becomes equal to the mean distance D, which is
represented as follows:

D =
1

NC2

N
∑

i=1

N
∑

j>i

Dij. (6)

From Equation (5), α can be determined as follows:

α = −
ln 0.5

D
. (7)



706 S. Chattopadhyay, D.K. Pratihar, S.C. De Sarkar

Next, entropy (Ei) of each data point with respect to the other data points is
calculated as follows:

Ei = −
j 6=i
∑

j∈X

(Sij log2 Sij) + (1− Sij) log2(1− Sij)). (8)

During clustering, the data point having the minimum entropy value is selected as
the cluster center. The clustering algorithm is explained below.

Clustering Algorithm: It consists of the following steps:

1. Calculate Ei (i = 1, 2, 3, . . . , N) for each Xi lying in [T ] hyperspace.

2. Determine minimum Ei and select Xi,Min as the cluster center.

3. Put Xi,Min and the data points having similarity with Xi,Min greater than β

(threshold value for similarity) in a cluster and remove them from [T ].

4. Check whether [T ] hyperspace is empty. If yes, terminate the program, else go
to Step 2.

In this algorithm, Ei is calculated in such a way that a data point, which is far away
from the rest of data points, may also be selected as a cluster center. To prevent
such a situation, another parameter called γ (in %) has been introduced, which is
nothing but a threshold used to declare a cluster to be a valid one. If the number of
data points present in a cluster becomes greater than or equal to γN

100
, we declare it

as a valid cluster. Otherwise, these data points will be treated as the outliers. The
above EFC algorithm has been extended as follows.

2.1.2 Proposed Extensions of EFC Algorithm

The above EFC algorithm developed by Yao et al. [23], in which entropy values of
the data points are calculated only once, is called Method 1. Moreover, the constant
α (refer to Equation (7)) is determined only once. Thus, in their approach, they
considered the fixed values of α (used to calculate similarity) and entropy, and we call
it Approach 1. To extend their work, two other approaches (namely Approaches 2
and 3 ) have been developed. In Approach 2, entropy values are calculated only once
but the similarity values are updated iteratively for the remaining data points in [T ],
after some clusters are formed. In Approach 3, both the entropy as well as similarity
values are updated iteratively from the leftover points in [T ], after a particular cluster
is determined. Besides these two approaches, two other methods (for example,
Method 2 andMethod 3 ) have been developed by the authors earlier [5], to determine
the cluster centers, which are discussed below.
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Method 2: Determination of cluster centers based on total similarity of
the data points

In this method, a data point having the maximum total similarity with other
data points has been selected as a cluster center. Total similarity of a data point
is calculated as follows:

Si =
j 6=i
∑

j∈X

Sij. (9)

All the three approaches have been developed as discussed above. As a simpler
expression (refer to Equation (9)) is used in this method, compared to that in
Method 1 (that is, Equation (8)), it is expected to be faster than Method 1.

Method 3: Determination of cluster centers based on dissimilarity-to-
similarity ratio (DSR)

In this method, a ratio of dissimilarity to similarity (DSR) is calculated for
each data point by considering its similarity with all other points by using the
following expression:

DSRi =
j 6=i
∑

j∈X

(1− Sij)

Sij

. (10)

The point having the minimum DSR is selected as the cluster center. As it is
a simple expression, it avoids a lot of computation involved in Equation (8).
Thus, this method is also expected to be computationally faster than Method 1.
All the above three approaches have also been developed in this method.

2.2 Cluster Visualization Tool: Self-Organizing Map

Self-organizing map (SOM) is a popular tool used to map the higher dimensional
data into a lower dimension (say, 2-D or 3-D) by keeping their topological informa-
tion intact, for visualization [13]. It works based on the principle of unsupervised
and competitive learning. It consists of two layers, namely input layer and compe-
tition layer. In the input layer, there are N multivariate data points, which are to
be mapped to 2-D, for the ease of visualization. Competition layer carries out three
basic operations, such as competition, cooperation and updating. The winner neuron
or the best match for an input is determined through competition. The neighbor-
hood surrounding the winner neuron is then identified and they cooperate with each
other. The winner neuron along with its neighbors are then updated. Interested
readers may refer to [9], for a detailed description of the algorithm.

3 RESULTS AND DISCUSSION

The quality of the obtained clusters has been tested in terms of discrepancy factor
(DF), compactness and distinctness. The DF relates the quality of the obtained
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clusters with that of the already known and ideal clusters. It is calculated as fol-
lows:

DF =
1

2

[

C
∑

i=1

(Ai +Bi) +OL

]

, (11)

where C represents the number of valid clusters, Ai indicates the number of wrong
elements included in the ith cluster, Bi denotes the number of right elements missed
by the ith cluster and OL represents the number of outliers. Compactness of a clus-
ter is determined by calculating the average Euclidean distance of the members of
a cluster with respect to its center. Similarly, distinctness of a set of clusters is de-
cided by calculating the average of the inter-cluster Euclidean distances. Moreover,
the above clustering algorithms have been compared in terms of their computa-
tional time (seconds). The user time values of the algorithm have been recorded
for 50 times (as a slight variation is observed in some of the user time values) on
a P-IV PC and the average of the above values (that is, tav in seconds) is calcu-
lated.

3.1 Clustering of IRIS data

Clustering is done on IRIS data by using both the FCM as well as EFC algorithms.
In FCM algorithm, the value of fuzziness f and termination criterion ǫ are set
equal to 2.0 and 0.001, respectively, after a careful study. The set of clusters, thus
obtained, are shown in Table 1.

Cluster 1 Cluster 2 Cluster 3

50 0 0

0 47 3

0 13 37

Table 1. FCM-yielded set of clusters on IRIS data

It is to be noted that there is no outlier and DF is coming out to be equal to 16.
Figure 1 a) shows 2-D plot of the above set of clusters as obtained by using the SOM,
in which three clusters have been distinctly identified. The average computational
time tav of the algorithm is found to be equal to 0.0252 seconds.

Entropy-based fuzzy clustering (EFC) methods and their different approaches
are found to be sensitive to the threshold value of similarity, that is, β. As β in-
creases, the number of clusters is seen to increase, and then it reaches the maximum
value, corresponding to a value of β. Moreover, the number of clusters is found to
decrease with the further increase in value of β. On the other hand, the number of
outliers is seen to be either equal to zero or near to zero for small values of β, but
it suddenly increases with the increase in β value.

Table 2 shows the best set of clusters obtained by using different method-
approach combinations of the EFC algorithm on IRIS data set.

Approach 1 of Method 3 is found to yield the best set of clusters for this data
(corresponding to which, the DF is coming out to be the lowest). It is important to
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Fig. 1. The best set of clusters on IRIS data obtained by a) FCM algorithm, b) Approach
1 of Method 3 of EFC algorithm

Approach 1 Approach 2 Appro ach 3

Method 1 β = 0.695 β = 0.5575 β = 0.476
50 0 0 50 0 0 50 0 0
0 42 0 0 11 32 0 11 32
0 18 32 0 41 3 0 12 34

OL = 8, DF = 26 OL = 13, DF = 27 OL = 4, DF = 23

Method 2 β = 0.675 β = 0.635 β = 0.67
0 0 50 0 50 0 0 0 50
46 0 0 49 0 0 46 0 0

22 28 0 29 0 9 22 19 0
OL = 4, DF = 26 OL = 13, DF = 42 OL = 13, DF = 35

Method 3 β = 0.675 β = 0.68 β = 0.5 775
0 0 50 0 0 44 0 0 50

50 0 0 49 0 0 49 0 0
9 32 0 9 34 0 22 19 0

OL = 9, DF = 18 OL = 14, DF = 23 OL = 9, DF = 32

Table 2. The best set of clusters obtained by different method-approach combinations of
EFC algorithm on IRIS data



710 S. Chattopadhyay, D.K. Pratihar, S.C. De Sarkar

note that it has occurred corresponding to a value of β equals to 0.675. For visualiza-
tion, the best set of clusters (consisting of multi-dimensional data) obtained above
have been mapped to 2-D by utilizing a SOM (refer to Figure 1 b)). The clusters
are found to be distinct but at the same time compact in nature. Computational
time of the best method-approach combination of the EFC algorithm is found to be
equal to 0.0242 seconds.

3.2 Clustering of WINES Data

Both the FCM as well as EFC algorithms have been used to do the clustering of
WINES data. Their performances have been tested on the said data, as explained
below.

The parameters: f and ǫ of the FCM algorithm have been set equal to 2.0 and
0.001, respectively.

Cluster 1 Cluster 2 Cluster 3

44 0 15

0 52 21

0 20 27

Table 3. FCM-yielded set of clusters on WINES data

Table 3 shows the obtained clusters and their data points as yielded by the above
algorithm. To check the quality of the set of clusters obtained above, DF has been
calculated and found to be equal to 55.5. The above set of clusters involving multi-
dimensional data have been mapped into 2-D by using the SOM, for visualization,
which are shown in Figure 2 a).

It is observed that the clusters are not overlapping to each other and the arrange-
ment of the data points inside a cluster is compact in nature. The computational
time (that is, tav) of this algorithm is coming out to be equal to 0.0388 seconds.

Three methods and their approaches of EFC algorithm have been tried to cluster
the WINES data. The obtained clusters are shown in Table 4.

It is to be noted from the above table that Approach 3 of Method 1 has yielded
the best set of clusters. Figure 2 b) shows the above best set of clusters, after
reducing their dimensions to two. The clusters are found to be compact as well as
distinct too. The average user time tav of Approach 3 of Method 1 is found to be
equal to 0.0450 seconds.

3.3 Clustering of OLITOS Data

OLITOS data set has been clustered using both the FCM as well as EFC algorithms
and the results are explained below.

The clusters obtained by the FCM algorithm after setting the values of f and ǫ

to 2.0 and 0.001, respectively, on the OLITOS data, are shown in Table 5. For
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Fig. 2. The best set of clusters on WINES data obtained by a) FCM algorithm, b) Ap-
proach 3 of Method 1 of EFC algorithm

Approach 1 Approach 2 Approach 3

Method 1 β = 0.5255 β = 0.5 β = 0.575

59 0 0 59 0 0 57 0 0

48 4 15 60 1 1 34 2 23

0 38 1 0 28 19 0 44 0

OL = 13, DF = 66 OL = 10, DF = 90 OL = 18, DF = 54.5

Method 2 β = 0.565 β = 0.5675 β = 0.59
51 0 0 50 0 0 45 0 15
53 9 0 53 0 1 47 4 1
0 20 26 0 23 25 0 45 0

OL = 19, DF = 92 OL = 17, DF = 85.5 OL = 21, DF = 72

Method 3 β = 0.5685 β = 0.569 β = 0.59
50 0 0 50 0 0 44 0 15
53 9 0 53 9 1 48 4 1
0 20 25 0 23 25 0 45 0

OL = 21, DF = 94 OL = 17, DF = 104 OL = 21, DF = 70.5

Table 4. The best set of clusters obtained by different method-approach combinations of
EFC algorithm on WINES data
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

18 6 15 9

4 8 6 7

6 2 11 15

2 2 1 9

Table 5. FCM-yielded set of clusters on OLITOS data
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Fig. 3. The best set of clusters on OLITOS data obtained by a) FCM algorithm, b) Ap-
proach 1 of Method 1 of EFC algorithm

the above set of clusters, the value of DF is coming out to be equal to 74.5. The
above multi-dimensional clusters are mapped into 2-D using the SOM, as shown in
Figure 3 a). The distinctness of the above set of clusters has been proved through
the above figure. The average user time value, that is, tav of this algorithm is found
to be equal to 0.0321 seconds.

The performances of EFC-based methods and their approaches are tested on the
OLITOS data set. Approach 1 of Method 1 (corresponding to β = 0.3875) is found
to yield the best set of clusters (refer to Table 6), as the DF corresponding to this
method-approach combination is found to be the least.

The clusters are found to be well-distinguished from each other, through the cal-
culation of the inter-cluster Euclidean distances. The similar observations have been
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Approach 1 Approach 2 Approa ch 3

Method 1 β = 0.3875 β = 0.355 β = 0.3575
10 3 5 32 16 8 12 14 16 7 9 16
1 2 4 18 7 10 3 5 5 9 4 7
4 20 7 3 16 16 2 0 14 18 2 0
5 3 1 2 6 3 2 0 6 3 2 0

OL = 0, DF = 59 OL = 0, DF = 85.5 OL = 2, DF = 76

Method 2 β = 0.7 β = 0.611 β = 0.6
3 0 4 6 25 1 12 9 30 7 2 9
4 0 0 1 19 1 0 1 21 0 1 1
0 10 2 1 14 12 1 0 15 6 9 0
0 0 1 0 2 0 2 0 2 4 0 0

OL = 88, DF = 107.5 OL = 21, DF = 67 OL = 13, DF = 72.5

Method 3 β = 0.7 β = 0.611 β = 0.61
3 0 5 25 1 12 9 25 10 2 9
4 0 1 19 1 0 1 19 0 1 1
0 10 1 14 12 1 0 14 4 11 0
0 0 0 2 0 2 0 2 2 0 1

OL = 96, DF = 95.5 OL = 21, DF = 67 OL = 19, DF = 79

Table 6. The best set of clusters obtained by different method-approach combinations of
EFC algorithm on OLITOS data

made from Figure 3 b) also, which is obtained after mapping the multi-dimensional
data into 2-D. Computational time of the above method-approach combination of
EFC algorithm is found to be equal to 0.0277 seconds.

3.4 Clustering of Psychosis Data

Psychoses data [6] have been clustered using the above two techniques, as explained
below.

3.4.1 Clustering Based on FCM Algorithm

One thousand psychosis data have been clustered by pre-setting the number of
clusters to 7, as there are seven identifiable psychotic diseases. After a careful
study, the parameters: cluster-fuzziness f and termination criterion ǫ are set equal
to 2.0 and 0.001, respectively. The clusters are formed by putting the individual data
point into a cluster, with which it has the highest membership value. The resultant
seven clusters are found to contain 162, 141, 148, 108, 162, 103 and 176 data-points,
respectively. These clusters are mapped into 2-D for visualization using the SOM
(refer to Figure 4 a)) and their qualities are assessed.
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3.4.2 Clustering Based on EFC and Its Proposed Extensions

As the performance of an EFC algorithm depends on the threshold value of similari-
ty (β), experiments are carried out for all the above method-approach combinations
by varying β. Trials are made to identify the best set of clusters for each of the
method-approach combinations. Approach 3 of Method 1 is found to yield the best
set of clusters (seven in number containing 231, 143, 207, 159, 60, 77 and 76 data-
points) with only 4.7% outliers, corresponding to a β equal to 0.455 (refer to Fig-
ure 4 b)).
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Fig. 4. The best set of clusters obtained using a) Fuzzy C-Means algorithm, b) Approach-3
of Method 1 of EFC algorithm on psychosis data

3.5 Comparisons

The performances of FCM algorithm have been compared to those of EFC algo-
rithms, in terms of the quality of clusters obtained and their computational time
values, which are discussed below.

3.5.1 Quality of the Developed Clusters

The quality of a cluster may be expressed with the help of the following measures:
discrepancy factor (DF), compactness and distinctness as discussed above. Table 7
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compares the best set of clusters obtained by using two algorithms (that is, FCM
algorithm and EFC algorithms) on three standard data sets, such as IRIS, WINES
and OLITOS.

Clustering
IRIS WINES OLITOS

technique

App 1 of Method 3 App 3 of Method 1 App 1 of Method 1
β = 0.675 β = 0.575 β = 0.3875
00 00 50 57 00 00 10 03 05 32

EFC 50 00 00 34 02 23 01 02 04 18
09 32 00 00 44 00 04 20 07 03

05 03 01 02
OL = 09, DF = 18 OL = 18, DF = 55 OL = 00, DF = 59

50 00 00 44 15 00 18 06 15 09
00 47 03 00 21 52 04 08 06 07

FCM 00 13 37 00 27 20 06 02 11 15
02 02 01 09

DF = 16 DF = 56 DF = 75

Table 7. The best set of clusters obtained by FCM and EFC algorithms for IRIS, WINES
and OLITOS data sets

In case of IRIS data, out of different method-approach combinations of EFC
algorithm, Approach 1 of Method 3 has yielded the best set of clusters, which are
found to be slightly worse, in terms of DF, compared to those obtained by the FCM
algorithm. Moreover, a close watch of Figures 1 a) and 1 b) reveals that both the
approaches are able to yield the distinct clusters but the clusters determined by the
EFC algorithm are found to be more compact compared to those provided by the
FCM algorithm.

In case of WINES data, Approach 3 of Method 1 of EFC algorithm is able
to identify and make better clusters (in terms of DF) compared to those of FCM
algorithm. Both algorithms are able to provide with the distinct clusters but the
clusters obtained by EFC algorithm are found to be more compact compared to
those achieved by the FCM algorithm (refer to Figures 2 a) and 2 b)).

For OLITOS data, Approach 1 of Method 1 of EFC algorithm has recorded
better performance compared to that of the FCM algorithm, in terms of DF. It
has been observed from Figures 3 a) and 3 b) that EFC algorithm is able to yield
more compact and distinct clusters compared to those obtained by the FCM algo-
rithm.

In case of psychosis data, the term DF cannot be determined, as the ideal
clusters are not known beforehand. Both the FCM and EFC algorithms are able to
give distinct clusters but the clusters obtained by the EFC algorithm are found to
be more compact compared to those yielded by the FCM algorithm.

Thus, in terms of DF, the EFC algorithm is found to perform better than the
FCM algorithm in case of WINES and OLITOS data sets, whereas the former has
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been defeated by the latter in case of IRIS data. It is interesting to note that EFC
algorithm is able to generate more compact clusters for all the data sets. Moreover,
the performances of the clustering algorithms are found to be data-dependent.

3.5.2 Computational Time

The computational time (that is, average user time) values of different method-
approach combinations of EFC algorithm and the FCM algorithm have been com-
pared, while carrying out clustering of the above three standard data sets, such as
IRIS (150× 3), OLITOS (120× 4) and WINES (178× 3), on a P-IV PC. Figure 5
shows the above comparisons on a graphical plot.
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Fig. 5. Average user time values of different clustering algorithms vs. data size

It is interesting to note that Approach 3 of Method 1 of EFC algorithm is
found to be the slowest of all. On the other hand, Approach 1 of Method 2 of
EFC algorithm is seen to be the fastest of all, except for the OLITOS data. The
FCM algorithm is found to be faster than Approach 3 of Method 1 but slower than
Approach 1 of Method 2 of EFC algorithm. Except for a few combinations of EFC
algorithm, the average user time values are found to increase with the data size,
in general; but, the reverse trends have been noticed in Approaches 2 and 3 of
Method 1, Approach 2 of Method 2 and Approach 3 of Method 3 and it could be
due to the fact that the computational time depends on not only the size but also
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the type of the data. It is important to note that similar observations have also
been made while clustering the psychosis data using the FCM and EFC algorithms.

From the above observations, we can summarize that the computational time of
Method 2 of EFC algorithm is the least, as it involves a lower amount of computation
compared to other methods of EFC algorithm. Method 1 of EFC algorithm is found
to take the maximum CPU time, as it deals with more arithmetic operations also
involving some logarithmic terms. As far as the approaches of EFC algorithm are
concerned, the computational time is seen to be the least in Approach 1, as the
similarity and entropy values are calculated only once, whereas Approach 3 takes
the maximum computational time, as it involves more computations to update the
similarity and entropy values iteratively.

4 CONCLUDING REMARKS

From the above study, the following conclusions have been drawn:

• In terms of DF, the FCM algorithm is found to perform better than the EFC
algorithm in case of IRIS data, whereas the former has been defeated by the
latter in case of WINES and OLITOS data sets. Thus, the performance of the
algorithm is data-dependent.

• EFC algorithm is able to yield more distinct and at the same time more compact
clusters compared to those obtained by the FCM algorithm.

• Approach 3 of Method 1 and Approach 1 of Method 2 of EFC algorithm are
found to be the slowest and fastest of all, respectively.

• FCM algorithm is seen to be faster than Approach 3 of Method 1 of EFC algo-
rithm but slower than Approach 1 of Method 2 of EFC algorithm.

• Method 1 and Method 2 of EFC algorithm are found to be the slowest and
fastest of all, respectively.

• Computation time of Approach 1 and Approach 3 of EFC algorithm are seen to
be the least and highest of all, respectively.

• SOM algorithm is able to map higher dimensional clustered data into 2-D for
visualization, after preserving the topological information intact.

5 SCOPE FOR FUTURE WORK

The present work is an attempt to carry out comparative study of FCM algorithm
and EFC algorithms of clustering, in terms of the quality of the clusters made and
their computational time. Fuzzy reasoning algorithms will be developed in future
by using the best set of clusters, thus obtained. Presently, the authors are working
on these issues.
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